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Representational State Transfer (REST), as an architectural style for distributed hyper-
media systems, enables scalable operation of the World Wide Web and is the foundation

for its future evolution. However, although described over 10 years ago, no formal model

for representing RESTful systems exists that is comprehensive in following REST prin-
ciples, intuitive to Web engineers and researchers alike, and offers practical development

guidelines. The lack of such formal models has hindered understanding of both the REST

architectural style and the Web architecture, consequently limiting Web engineering ad-
vancement. In this paper we present a generic model of RESTful systems based on a

finite-state machine formalism. We show that the model enables intuitive formalization
of REST design principles, including uniform interface, stateless client-server operation,

and code-on-demand execution. Furthermore, we describe the model’s mapping to a

system-level view of operation and apply the model to an example Web application
and several real-word Web applications. Finally, we explore the practical challenges

and benefits of using the model in the field of Web engineering, ranging from better

understanding of REST to designing frameworks for RESTful system development.
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1 Introduction

One of the main reasons for the wide adoption of the World Wide Web (Web) as a global

information system has been its ability to scale and remain reliable with the rapid growth in

the number of its users and applications. Enabling this growth is an architecture [1] designed

just for the purpose of developing large-scale distributed hypermedia systems such as the

Web. The foundation of this architecture is a set of software design principles called the

Representational State Transfer architectural style (REST) [2]. In essence, REST describes

how a Web application should behave in order to maximize beneficial properties, such as

simplicity, evolvability, and performance.

From its introduction in year 2000, REST has not only guided many incremental changes

in the Web’s continuous evolution, such as the recently standardized HTTP PATCH method

[3], but has also been guiding the development of its new dimensions in order to preserve

its desirable properties. These efforts include the expansion of the Web with higher-level
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applications, interlinked data, physical devices and real-time access, through mashups [4],

the Semantic Web [5], Web of Things [6] and the Real-Time Web [7]. However, as the Web

grows in functionality, it also grows in complexity and is consequently becoming harder to

understand, analyze and develop at the architectural level. Web engineers no longer work

only with the HTTP protocol [8] and HTML media type [9] as during the “Web 1.0” era,

rather with many HTTP extensions [10], new application-level protocols such as ATOM [11],

SPDY [12], Constrained Application Protocol (CoAP) [13] and PubSubHubBub (PSHB) [7],

many different media types such as ATOM [14], JSON [15], VoiceXML [16], and different

RDF serializations [17], and thousands of APIs [18]. In the future, this space of technologies

will become even more complex, for example with the introduction of WAKA [19], the long-

awaited successor of HTTP. At the same time, in order to keep its usability with this growth,

the Web must retain the benets of RESTful design. Therefore, it is increasingly important

that Web based systems are developed according to the REST style and understanding REST

has become essential for engineering the Web and its future.

However, although defined over 10 years ago, architectural principles of the REST style

have only been semi-formally described using diagrams, tabular techniques and natural lan-

guage descriptions. Furthermore, although formal models of hypermedia systems in general

do exist [20], no such model covers fundamental principles of REST and most techniques are

used to model the Web which includes many unRESTful properties. This lack of formal ex-

planation has increasingly been causing negative effects, such as confusion in understanding

REST concepts [21], misuse of terminology [22] and ignorance of benefits of the REST style.

For example, common misunderstandings include the overload in meaning of the word state,

such as state, application state, resource state and session state [23] [24], and identifying

functionality of REST user agents with Web browsers [25].

In result, Web researchers and engineers experience difficulty in concisely explaining both

small-scale and large-scale Web patterns or requirements, such as defining Web application

interaction [26] [27], formalizing Web browser functionality [28] and defining future Web

architectural goals [29]. Furthermore, development of systems which adhere to the REST

style is difficult due to a lack of software frameworks which guide their implementation [30].

This is especially true for developing machine-driven RESTful client components and their

application in machine-to-machine RESTful interaction and service composition [31]. For

example, the Web application description language (WADL) [32] is infamous for not being

well aligned with REST principles. We believe this to be a direct consequence of the absence

of formal models which are used as the practical encoding of general architectural principles

and serve as the foundation for the software development process in such frameworks and

description languages.

In this paper we present a finite-state machine (FSM) [33] formalism for modeling RESTful

systems, with the primary motivation of contributing to the understanding of the REST style.

Our choice of using a FSM formalism was inspired by The Rule of Least Power [34] which

originally suggests the use of the least powerful language suitable for expressing constraints

or solving a problem. Consequently, one of our goals was to explore the possible limits of

the FSM formalism for this specific purpose in order to suggest the use of more a powerful

model. Furthermore, one of the core principles of the REST style, transferring resource

representations for transitioning agents from one state to another, suggests the usage of a
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state transition system formalism.

Our generic model is based on the nondeterministic finite-state machine formalism with

epsilon transitions (ε-NFA). We first explain the mapping of the model’s abstract elements

to those of a RESTful system. In order to illustrate model usage, we introduce an example

Web application and present its ε-NFA model. Next, we explain how each of REST principles

map to the model, including uniform interface, stateless client-server operation, and code-on-

demand execution. We show that the transition function of the ε-NFA enables formalization

of the transformation of the system’s application state, following the hypermedia as the engine

of application state principle. Furthermore, we show that nondeterministic transitions of the

model enable formalization of the temporally varying mapping of resources to representations

and that ε-transitions enable formalization of code-on-demand execution. The presented

model naturally translates to the client-centric view of RESTful system operation with client

components storing application state, issuing resource manipulation requests and integrating

responses into application state, while server components perform request processing.

This paper extends and refines our previous research in this field [35]. The remainder of

the paper is organized as follows. In Section 2, we give an overview of related work, including a

description of principles of the REST architectural style, existing approaches for formalization

of RESTful and Web-based systems, and the finite-state machine formalism. Section 3 defines

our approach for modeling RESTful systems with finite-state machines and presents the model

of an example Web application. In Section 4 we discuss practical applications of the presented

approach, as well as its limitations. Specifically, we create models of two real-world Web-based

systems, explore issues concerning model creation and state explosion for models of complex

system, and present advice for designing software frameworks for building RESTful systems.

Section 5 concludes the paper with directions for future work.

2 Background and Related Work

This section presents the background and related work for our research. First, in the following

subsection, we describe the principles of the REST architectural style. Next, we give a broad

overview of existing approaches for modeling RESTful systems. Finally, we recapitulate

the finite-state machine formalism which we use as the basis of our formalism for modeling

RESTful systems.

2.1 Representational State Transfer Architectural Style

A software architectural style [36] is a set of abstract design principles which, when applied

to a specific system, incur beneficial properties. Examples of well known architectural styles

include the pipe-and-filter style, layered style and client-server style. The REST architectural

style [2] is intended to be used for distributed hypermedia systems and when applied to

such systems, REST enables their scalability, simplicity, modifiability, visibility, portability,

performance and reliability.

REST may be seen as a composition of six primitive architectural styles, also sometimes

called principles or constraints: client-server, layered, cacheable, stateless, code-on-demand

and uniform interface principle. A simplified view of the principles of the REST style is

presented in Figure 1.

The client-server principle promotes separation of concerns by dividing the system into
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Fig. 1. Simplified visualization of REST principles

client-based and server-based components, such as user agents and origin servers (1). Client-

based components are responsible for sending request messages while server-based components

respond with response messages. The layered principle defines that client-server communi-

cation may be proxied through intermediary components, such as caching middleware and

gateways (2). The cacheable principle defines that request and response messages may be

cached by any of the components in the system (3). The stateless principle defines that

requests from client components should contain all the information necessary to process the

request, and that session state is stored by the client component (4). Session state is often

called application state in the context of RESTful systems. The code-on-demand principle

defines that client functionality may be extended by downloading and executing code in the

form of applets or scripts (5).

Finally, the uniform interface principle guides the behavior of components through four

sub-principles: identification of resources, manipulation of resources through representations,

self-descriptive messages and hypermedia as the engine of application state. The identifica-

tion of resources principle defines that functionality on server-based components is exposed

through uniquely identifiable resources (6). The manipulation of resources through represen-

tations principle defines that client-server communication is based on transferring represen-

tations of resources, which are a serialization of the resources’ state (7). The self-descriptive

messages principle defines that each request and response message must include enough in-
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formation to describe how to process the message, e.g. to indicate cacheability (8). On the

Web, This principle is implemented with a standard well-known set of protocols, protocol

control data, representation media types and link relations, such as the HTTP protocol, and

HTML and ATOM media types. The hypermedia as the engine of application state principle

restricts requests of client-based components only to resources dynamically identified with

links in hypermedia representations of previously received responses (9).

Overall, the operation of a RESTful system may be seen as the temporal transformation of

the user agent’s application state in order to achieve some application-specific goals. The user

agent uses the media types of representations in the current application state to determine

the set of hypermedia links. A single link is then chosen based on application goals to form

a resource manipulation request. The response representation is then integrated into the

application state, where the exact integration method is determined by the link type of the

chosen link, after which the cycle is repeated.

2.2 Existing Approaches for Modeling RESTful Systems

This section gives an overview of existing approaches for modeling RESTful systems with the

goal of examining the degree of completeness in which REST principles are covered by each

approach. We give an overview of related work focused both on REST and similar styles and

on modeling Web applications and hypermedia systems in general. While we acknowledge

that some modeling approaches have been created with different motivation than ours, such

as documentation of systems, we still strongly believe that a comprehensible, intuitive and

practical formalism should be the foundation upon which other aspects are defined upon.

In summary, our analysis shows several issues with existing formal and semi-formal models

that motivate our research. First, most models are not focused on REST, rather on hyper-

media applications in general or Web applications, and thus do not include many of REST

principles. Second, most models do not offer an explicit mapping from REST principles to

the chosen formalism, and in general do not use the terminology and concepts originally pro-

posed for REST. Third, most models address only REST’s static properties or do not offer

a mapping of REST principles to a system-level view of operation dynamics. Fourth, some

principles of REST are rarely included in models, such as the temporally varying mapping of

resources to representations, code-on-demand execution and steady application states.

In [22], a model based on extended influence diagrams and visual modeling tools is pre-

sented with the goal of visualizing the structure and design rationale of architectural styles.

However, although simple to understand, such a visualization of the hierarchy of principles

used to describe architectural styles does not formalize how those principles translate to a

system-level architecture. For example, the presented model of the REST style does not

explain the roles of different types of components and data elements, or their interaction.

In [37], the authors present Alfa, a framework for characterization of architectural styles,

based on composing a small set of architectural primitives. The authors use Alfa to describe

many architectural styles, including a significant subset of REST, the layered-client-code-on-

demand-cache-stateless-server (LCCOD$SS) style. However, this style does not include the

uniform interface principle, one of the most important and distinct principles of REST, while

its model does not explain key REST concepts, such as resources, representations and media

types.
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In [38] the authors present a definition of RESTful semantic Web Services using a process

calculus formalism. In this model, a RESTful system is described as a set of processes,

representing origin servers and user agents, which exchange request and response messages

over uniquely identified channels. This approach is very promising as it allows that channel

names exchanged between processes be used to model the exchange of messages containing

resource identifiers. This property of the model enables formalization of the REST principle

of using hypermedia links as the engine of application state. We encourage further work

on using process algebras for modeling RESTful systems which would include a mapping of

resources, representations, media types, steady and transition states to such a model together

with a generalization of the model which would not be bound to standard HTTP methods as

it currently is.

The following two approaches are based on Petri net-based models. In [39] the authors

present a promising formal model for specifying RESTful execution of processes specified by

Service nets, a specific class of Petri nets that include value passing. The main advantage

of the model is its integration of hypermedia-driven application flow while its main use is

in modeling composition of RESTful processes. However, the model is not explicit on where

application state is stored and does not explain its transformation in response to initial fetches

of resource representations which occur at the beginning of an application flow. Furthermore,

the model introduces a notion of static and dynamic ports, metaphors for static and temporary

resources, which is not RESTful since client components never know and do not need to know

if a resource is static or temporary.

Another approach based on Petri nets is presented in [40]. The authors propose REST

Chart, a model and language for designing and describing REST APIs, based on Colored

Petri nets. Using REST Chart, a REST API is modeled as a topology of representational

state spaces while the current state of a user agent is described as the active subset of that

topology. However, the model does not address the code-on-demand principle of REST and

does not explain the nature of change of the application state with regard to different link

types and link relations.

The following five approaches are based on various UML diagrams. In [41] the authors

present the Resource Linking Language, an XML-based language for describing interlinked

REST resources and consequently the service that can be accessed by interacting with those

resources. The language is based on a RESTful service description metamodel, formalized

as a UML class diagram, and which incorporates many REST concepts, such as resources,

representations, media types and links. However, the static metamodel does not explicitly

express the important dynamic properties of REST, such as the application state contained

on the client side and the effects of the code-on-demand principle, and does not map REST

concepts to a client-server architecture.

In [42] the authors present a navigation-oriented hypertext model based on statecharts,

as an upgrade over using finite-state machines. The model uses the structure and execution

semantics of statecharts to specify both the hierarchical organization and the browsing se-

mantics of a hyperdocument. However, the model is not focused on RESTful system and

does not formalize many RESTful principles, such as the client-server style and the uniform

interface principle.

In [43] the authors present an approach to model the structural and behavioral interface
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of RESTful Web services using UML class and UML protocol diagrams. Furthermore, these

models describe the behavior of operations in terms of preconditions and postconditions, and

may be serialized as extensions of a WADL interface specification. Although the authors claim

that services constructed according to such models are RESTful by construction, the models

ignore several principles and concepts of REST. First, the models assumes that all resource

identifiers are known in advance in order to define preconditions and postconditions, which

does not follow the hypermedia principle. Furthermore, the model ignores the self-descriptive

messages principle of the uniform interface principle, does not account for temporally varying

resources and confuses resource state with application state.

In [44] the authors describe the process of developing RESTful Web service interfaces from

high-level functional specifications. For each phase of the process, the authors use appropriate

UML diagrams for modeling service interfaces, and describe the transformation of models for

the next phase. While the described approach does attempt to solve the important problem

of deriving the set of service resources and links from functional descriptions, it does not

account for the overall operation of distributed systems using those resources and links, which

is the focus of our research. Specifically, the described approach does not address several key

concepts of REST, such as application state and its change as guided by hypermedia controls,

and code-on-demand.

In [45] the authors extend the OOH4RIA model-driven development process for Rich

Internet Applications (RIAs) in order to support RESTful systems. Similar to the process

described in the previous passage, OOH4RIA is based on models and transformations of those

models in order to obtain an architecture of a RIA system. The authors extend OOH4RIA

with a new model based on UML class diagrams which maps the underlying server-side

services to a RESTful interface consisting of resources, protocol actions and links. However,

again similar to the process described in the previous passage, this approach focuses only

on the static description of server resources, and does not take into account the concept of

application state or its transformation.

In [46] the authors present a metamodel for modeling RESTful applications using diagrams

similar to UML class and state diagrams. The presented metamodel enables both structural

modeling, as a set of resource types, their attributes, relations and representation, and be-

havioral modeling, as resource state machines. However, the metamodel is strongly focused

on modeling server resources, which, although practical, is not a concern of RESTful design.

At the same time, the proposed metamodel ignores the concerns of client-based components

and interactions, such as defining the application state and code-on-demand execution.

In [47], an agent-based model of RESTful applications is presented. In the model, an agent

represents the user agent side of the application while the environment represents the origin

server side. The agent has several pools of predefined logic, including application, action

and protocol logic, formalized as a hierarchical state machine which drives the agent’s action

selection. Although explaining high-level dynamics of a RESTful system, the model is more

descriptive than formal, not providing an explicit mapping of many REST principles to the

model, including code-on-demand execution, resource representations and temporally varying

mapping of resources to representations.

In [48], the authors present a broad overview of modeling methods for Web application

verification and testing, using a categorization of criteria for classifying models of Web ap-
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plication. Although some criteria may be regarded as reflections of REST principles, such as

the dynamic navigation criterion which asserts the possibility of modeling servers that may

nondeterministically return responses for the same requests, this work is focused on Web ap-

plications only and most principles of REST were not considered. For example, in [49], the

authors introduce a finite-state machine (FSM) behavioral modeling approach for hypermedia

Web applications. The model is based on presenting Web pages as states and links as tran-

sitions in a FSM. Furthermore, the authors define multiple types of pages and transitions in

order to model activity-initiated transitions and automatic transitions. However, the model

is based on a deterministic FSM and does not explain the temporally varying mapping of

resources to representations in RESTful systems. Furthermore, the model is based on us-

ing only “clickable links” for transitions, i.e. only navigation is used for changing application

state, which is an incomplete definition of transitions in RESTful systems.

In [20], the authors give a broad systematization of formal and semi-formal reference mod-

els for hypermedia systems and a comparison of hypermedia engineering methodologies. Hy-

permedia reference models capture important abstractions found in hypermedia applications

and describe the basic concepts of these systems, such as the node/link structure. Semi-formal

models include the Amsterdam Hypermedia model while formal models include the Trellis

and Dexter reference models. However, although these models describe the mechanisms by

which the links and nodes in the hypermedia network are related, these do not include many

principles, concepts and terminology of RESTful systems. For example, the Dexter reference

model uses components and instances, while REST uses resources, representations and appli-

cation state. Furthermore, these models do not offer a dynamic operational system-level view

which maps system components to clients, servers and intermediaries.

In [50] the authors present an automata-based model of hyperdocuments with the goal of

verifying trace-based properties by model checking. The model is focused on simple hyperlink-

based connectedness of hypertext documents for the Trellis hypermedia system, which does

not include important properties of RESTful systems, such as the uniform interface principle.

However, two interesting ideas are presented. First, the underlying model upon which a

link automaton is constructed is based on place/transition nets in order to allow modeling of

parallel execution of hyperdocuments. Second, the authors present a temporal logic for model

checking link automatons.

In [51] the authors present a formal definition of RESTful Web services and propose a

method for RESTful Web service composition based on Linear Logic. As described, the

proposed approach improves the searching efficiency and guarantees the correctness and com-

pleteness of the service composition process. However, the proposed approach ignores the

concept of hypermedia, the core concept of RESTful systems, and does not explain how mod-

els based on Linear Logic satisfy system evolvability, another core benefit of RESTful design.

The authors also introduce many concepts, such as resource copies, which are not a part of

REST principles. Furthermore, linear logic is not a widely known formal model and will be

non-intuitive to most Web engineers and REST researchers.

While it is not focused on modeling, in [52] the authors describe a technique for crawling

Rich Internet Applications (RIAs) which is based on a hypercube model of crawled applica-

tions. In the hypercube model, the state of an application is represented as a set of events,

such as user interface events and network events, that are enabled in that state. Each edge in
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the model represents a transition between states that is triggered by the execution of exactly

one event available in the current state. While this description of application state is well

aligned with REST’s definition, the model does not account for nondeterministic transitions

which are the basis of resources that have temporally varying representations.

2.3 Finite-State Machines Formalism

Finite-state machines (FSMs) [33] are a mathematical formalism for describing processes with

a finite number of possible states and sequential state transitions. For formalizing RESTful

systems, we use a nondeterministic finite-state machine with ε-transitions (ε-NFA), an exten-

sion of the basic deterministic FSM model.

A ε-NFA is formally defined as a tuple (S,Σ, s0, δ, F ) where S is a finite, non-empty set

of states, Σ is a finite, non-empty set of symbols representing the input alphabet, s0 ∈ S is

the initial state of the ε-NFA, δ is the state transition function δ : S × (Σ ∪ {ε}) → P(S),

where P(S) is the power set of S, and F ⊆ S is the set of accepting states. A system-level

perspective of ε-NFA operation is shown in Figure 2.

Fig. 2. System-level view of ε-NFA operation

The initial state of the system is stored in the Current State module at system startup.

The Input Symbol Generator module generates an input symbol based on internal rules or

environment state (1). For example, the Input Symbol Generator module may be a human

user of the system or a machine generating input events. Since the generator is not a part of

the ε-NFA’s formal model but is required to properly model its operation, we define that the

generator has access to the system’s state stored in the Current State module. The Transition

Function accepts the generated input symbol and the current state (2), determines the next

state and stores it in the Current State module (3). The described cycle is then repeated

until there are no more input symbols generated by the Input Symbol Generator. Since the

ε-NFA is nondeterministic, the Transition Function module returns a set of states, for which

the practical meaning is that the system may be in any single state from that set. If at some

point at least one state stored in the Current State module is marked as accepting, it is said

that the ε-NFA accepts the sequence of input symbols read up to that point. Finally, the

ε-NFA supports ε-transitions for which the Transition Function does not need to read an

input symbol in order to modify the system’s state.

3 A Finite-State Machine Formalism for Modeling RESTful Systems

Although components of a RESTful system may be viewed as separate agents, each driven

by a self-contained FSM, we model the operation of the complete system, often called an
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application, as a single FSM. Such an approach enables the formalization of inter-component

interactions required by REST principles, and an higher-level practical view of the system

as a whole. While our formalism is focused more on explaining the operation of RESTful

systems, the formalism also explains the key elements and their static relations. The central

part of this view is the application state of a RESTful system, its definition, transformation

during system operation and relation to other concepts, as explained in section 2.1.

In the following subsections we first give an overview of the formalism by defining elements

of RESTful systems and mapping them to the elements of the ε-NFA. Second, in order to

illustrate the usage of the formalism, we introduce an example Web application and present its

ε-NFA model. Next, we describe the formalism in more detail by mapping REST principles to

the presented model, including client-server, stateless, code-on-demand and uniform interface

styles.

The presented formalism does not explicitly explain the layered and cacheable principles of

REST since these are not essential for describing the operation of a system from a functional

perspective. The cacheable principle enables that components cache previous responses in

order to reduce network requests, therefore only improving performance and not increasing the

functional properties of the system. Similarly, the layered principle reduces system complexity

and increases scalability by enabling hierarchical organization of components.

3.1 Formalism Overview

In order to explain our formalization of RESTful systems, we first define and give examples of

the key elements of RESTful systems. For our examples, we will use two typical Web-based

systems; a Web browser navigating to the Google search Web application homepage, and a

Web agent using the Twitter API [53].

First, let ResourceIdentifiers be a finite set of identifiers of system resources on

server components. For example, in Web-based systems the URI namespace [54] is used

for resource identification, and examples are http://www.google.com for the Google search

homepage resource and http://api.twitter.com/1/statuses/home timeline for the Twit-

ter API resource for fetching the user’s statuses.

Next, let Representations be the finite set of all resource representations, each con-

sisting of resource data, metadata and representation media type identifier:

Representations ⊆ data× P(Metadata)×MediaTypeIdentifiers

Furthermore, let Metadata be a finite set of key-value pairs Metadata ⊆ key × value, and

let MediaTypeIdentifiers be a finite set of identifiers of possible representation me-

dia types. Example representations include the document representing the Google search

homepage and the document containing a user’s Twitter timeline statuses. The Google search

homepage is a textual document of the HTML media type, i.e. text/html, and defines data

which is rendered into a visual interface by a Web browser, i.e. the Google search-box control

and the Google doodle image. The Twitter timeline document received via the Twitter API

is a textual document of the ATOM media type, i.e. atom+xml, and contains data which

is usually interpreted by machine-driven user agents to perform some task e.g. periodically

extract data. For the Web, the IANA organization maintains the set of registered media type

identifiers [55].
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Furthermore, let Resources be a finite set of server resources and let Operations be a

finite set of resource manipulation operations. By definition [2], a resource is a temporally

varying mapping to a set of equivalent resource representations:

Resources : ResourceIdentifiers→
(time×Operations×Representations→ EquivalentRepresentations)

where EquivalentRepresentations ⊆ P(Representations). Therefore, a resource may both

produce a representation of its state and take a representation as input in order to change its

state, as signified by the given resource manipulation operation. The set of representations

which a resource produces may change over time, but it is required that the semantics of the

resource do not change. Furthermore, although a resource may produce a representation of

its state in more than one media type it is required that these representations be semantically

equivalent.

Next, letRequests be the finite set of valid resource manipulation requestsRequests ⊆
Operations × ResourceIdentifiers × Representations and let Responses be a finite set of

resource manipulation responses Responses ⊆ Representations. The processing of user

agent requests by an origin server may therefore be defined as a function that maps requests to

responses RequestProcessor : Requests → Responses. The processing of a request may be

described as internally mapping the request to a set of semantically equivalent representations

and selecting a single representation from the set using user agent preferences:

RequestProcessor(req) =

Resources[req.resourceIdentifier](currentT ime, req.operation, req.representation)

[req.representation.mediaTypeIdentifier]

For example, the http://www.google.com resource identifier is mapped to a Google search

homepage representation and that mapping varies over time because the Google doodle image

changes for special events. Similarly, the http://api.twitter.com/1/statuses/home timeline

resource identifier is mapped to the Twitter timeline representation in ATOM format. How-

ever, the Twitter timeline resource supports many different media types, so the timeline rep-

resentation may also be returned in semantically equivalent JSON, XML, and RSS formats,

depending on user agent’s preferences. Therefore, the presented formalization supports the

modeling of content negotiation as an important property of RESTful systems. Further-

more, since both the Google search homepage and Twitter API resources are exposed using

the HTTP protocol, a resource manipulation request contains an HTTP operation, such as

GET for fetching content, and metadata as HTTP headers, such as Accept: text/html, for

specifying HTML as the preferred media type.

Furthermore, let MediaTypes be a finite set of media types which determine the set of

hypermedia links present in a representation:

MediaTypes : MediaTypeIdentifiers→ (Representations→ P(Links)).

Each link in the finite set of hypermedia links Links is defined by a resource identifier,

link type and link relation

Links ⊆ ResourceIdentifiers× LinkTypeIdentifiers× LinkRelations
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where LinkTypeIdentifiers is a finite set of link type identifiers and LinkRelations is a

finite set of link relations. Link types are defined in media type specifications; they define

the set of valid request generated for links with that link type, and the method by which a

user agent should integrate a response to a request for a link with that link type into the

application state. Therefore, a link type defines two functions:

LinkTypes : LinkTypeIdentifiers→ (RequestV alidator,ResponseIntegrator), where

RequestV alidator : Requests× Links→ {true, false}, and

ResponseIntegrator : ApplicationStates×Responses× Links→ ApplicationStates

where ApplicationStates is the set of all possible application states, and a single application

state is the set of representations currently present on the user agent. For example, the HTML

media type defines many link types, among which are the <a> and <img> link types. The

<a> link type defines a navigation link, meaning that the a user agent should generate an

HTTP GET request to fetch the linked resource’s representation and then use it to replace the

currently displayed representations. For example, the Google search homepage contains an

<a> link that navigates the user agent to the Google corporate Web page. In contrast, the

<img> link type defines an embedding link, meaning that a user agent should generate a GET

request to fetch the linked resource’s representation and then add it into the current set of

representations and display the image inline. For example, the Google search homepage also

contains an <img> link to the Google doodle image which is displayed inline on the search

page. Finally, the HTML <form> element is an example of a more complex hypermedia link.

The <form> element may be used to generate both HTTP GET and POST requests, and may

be used to generate request for resource identifiers which are defined only in a template form.

Therefore, the request validation function enables complex hypermedia links and usage of

identifier templates, such as URI templates [56].

Link relations determine the application-specific semantics of a link, and may be con-

sidered the machine equivalent of human-readable link text. For example, since the links on

the Google search homepage are meant to be interpreted by humans, they do not contain

link relations. However, ATOM representations from the Twitter timeline statuses API do

contain link relations since the representations are meant to be consumed by machine-driven

agents. For example, the ATOM alternate link relation signifies that the linked resource is

an alternate version of the resource described by the containing element.

Finally, it is said that a RESTful system is in a steady state if the client component

has no outstanding requests, as explained in more detail later. The set of steady states is

therefore a subset of the set of application states: SteadyStates ⊆ ApplicationStates. For

example, a Web browser navigating to the Google search homepage will be in a steady state

when both the top-level Web page and the embedded Google doodle image are fetched.

Finally, we map the defined elements of a RESTful system to the ε-NFA formal model as

follows. The set of states S of the ε-NFA represents the application states of the system,

S = ApplicationStates, where an application state is defined as a non-empty, directed graph

of representations, as explained in more detail later. Furthermore, the initial state s0 of the

ε-NFA represents the initial application state at system startup. The set of input symbols

Σ of the ε-NFA represents resource manipulation requests and their corresponding link,

Σ ⊆ Requests×Links. The transition function δ of the ε-NFA represents the validation
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and translation of input symbols into requests, processing of requests into responses, and

integration of responses into the next application state, δ : ApplicationStates× (Requests×
Links)→ P(ApplicationStates):

δ(state, inputSymbol) = δ(applicationState, request, link) =

if link.linkType.RequestV alidator(request, link) is true, then

link.linkType.StateIntegrator(applicationState,RequestProcessor(request), link),

else if link.linkType.RequestV alidator(request, link) is false, then

{}

where the result is a set of application states, rather than a single one, to account for the

non-deterministic nature of resources. Furthermore, since the ε-NFA includes ε-transitions,

for some application states the transition function may change the application state without

reading an input symbol, i.e. without the system generating a resource manipulation request.

Finally, the set of accepting states F of the ε-NFA represents the steady application

states, F = SteadyStates.

3.2 FSM Model for an Example Web Application

In order to illustrate concepts presented in this paper, we introduce a weather forecast Web

application. The resources comprising the Web application are shown in Figure 3.

Fig. 3. Example Web application

The base URI of the application is http://weather.example.com and we identify its re-

sources using relative addressing. The main Web page, located at /main, contains an <a> link

to the details Web page and a <script> element pointing to a JavaScript script located at

/script. The script periodically highlights the <a> link to the details page by changing the

color from blue to red. The details Web page, located at /details, contains an <img> tag

pointing either to /cloudy or to /sunny depending on the current weather. Furthermore, the
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details page contains a <script> element with inline JavaScript code which uses XmlHttpRe-

quest for periodically fetching the current temperature from /temp and displaying it in the

Web page. Finally, the details page contains an <a> link pointing to the main page. The

media types of the resources are text/html for /main and /details, image/png for /sunny

and /cloudy, and text/javascript and text/plain for /script and /temp, respectively.

We assume that the user of the application is using a modern Web browser.

The ε-NFA model of the example Web application is shown in Figure 4, with numbers

denoting states and letters denoting input symbols. The initial state 0 contains a represen-

tation with an <a> link to the /main page. After an HTTP GET request is issued (a), the

server returns a response containing the representation of the /main page which becomes the

current state. State 1 is not steady since the representation contains a <script> link to

/script which must be fetched. An HTTP GET request is issued to fetch the script (b) and

the application then enters the steady state 2. Because the script periodically changes the

color of the link pointing to the /details page, the application’s steady state may change

between states 2 and 3 using an (ε) transition.

Fig. 4. ε-NFA model of example Web application

When the user follows the link to the /details page (c), the application makes a non-

deterministic transition to transient states 4 and 5 because the representation contains an

<img> link pointing either to /sunny or /cloudy. After fetching the linked image using an

HTTP GET request (d or e), the application enters one of the steady states 6 and 7. Fur-

thermore, the representation of the details page contains an inline script which periodically

makes an HTTP GET request for the current temperature. However, since that GET request

is a made within a code-on-demand script, it is modeled as an (ε) transition. Furthermore,

since the returned temperature may have two possible values (25◦C or 30◦C), the application

nondeterministically enters states 8 and 9 if the weather was cloudy, or states 10 or 11 if the

weather was sunny. Because the script executes periodically, the application nondeterminis-

tically cycles between states 8 and 9, or states 10 and 11, depending on the weather. Finally,

because the /details page contains a link to the /main page, the user may at any time follow
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the link (a) and bring the application back to state 1.

3.3 Client-Server Style and Stateless Style Principles

Based on the presented formalism, Figure 5 shows the system-level view of a RESTful system

as a set of modules, their mapping to the elements of the ε-NFA, and distribution between

client and server components. Because client-server interaction in RESTful systems must be

stateless, the Application State module which stores the current application state is located on

the client component. This is also true for modules that are responsible for generating input

symbols: the Media Type Processor, Link Storage, Application-level Logic, Hypermedia-level

Logic and Protocol-level Logic. However, the transition function is divided between the client

and server components in order to satisfy the client-centric description of RESTful system

operation in which the server is responsible only for mapping requests to responses. Therefore,

the Request Preprocessor, State Integrator and Code-on-demand Engine reside on the client

component, and only the Request Processor on the server component.

Fig. 5. Mapping of client-server and stateless REST principles to the ε-NFA model

The interaction of the system’s modules is defined as follows. The resource representations

comprising the current application state are read by the Media Type Processor (1) in order

to determine the set of available hypermedia links. For example, the /main page of the

example Web application has the text/html media type which enables that the <a> link

to the /details page and <script> link to the /script script are recognized. The set of

links and application state are passed to the Protocol-level Logic, Hypermedia-level Logic and

Application-level Logic (2) so that one of the links may be chosen as the basis for the next input



368 A Finite-State Machine Approach for Modeling and Analyzing RESTful Systems

symbol. Protocol-level Logic and Hypermedia-level Logic are responsible for automatically

generating input symbols which guide the system to a steady state. Protocol-level Logic

generates input symbols based on protocol-level links and control data, such as response

status codes. For example, in the case of HTTP, if a 301 Moved Permanently status code

and Location header are received, the Protocol-level Logic automatically generates an input

symbol for fetching the resource representation from the new location.

On the other hand, Hypermedia-level Logic generates input symbols based on hypermedia-

level links in the representation data in the Application State, such as embedding links. Since

protocol-level rules have priority over hypermedia-level rules, Hypermedia-level Logic is ex-

ecuted only after Protocol-level Logic has finished executing. Furthermore, because steady

states are determined exclusively from the protocol control data and media types of the rep-

resentations in the current application state, Protocol-level Logic and Hypermedia-level Logic

execute before Application-level Logic. If the system is in a steady state, Application-level

Logic is responsible for generating input symbols based on application-specific goals, which

are derived either from user input or from application-specific rules encoded in the module.

For example, after the /main page has been fetched, two links are available: <script> for

embedding the /script script and <a> for navigating to the /details page. The former link

would be selected by Hypermedia-level Logic for downloading the script, while the latter link

would be selected by Application-level Logic, but only in response to a user clicking on the

link.

Application-level Logic may internally store application-specific data from the applica-

tion state. For example, a machine-driven agent may keep a history of temperatures in the

/details page from the example Web application. Furthermore, if the system is in a steady

state, Application-level Logic may store links used to fetch representations present in the Ap-

plication State into the Link Storage module (3), which is a capability for bookmarks. The

links present in Link Storage may be used by Application-level Logic as entry points of ap-

plication navigation, as if they are present in the Application State. Therefore, if a link from

Link Storage is used, the Application State is emptied of existing representations before the

request is sent. For example, if the /details page in the Web application example didn’t

contain a link back to the /main page, the user agent could add the link to the /main page

to the Link Storage and navigate back from the /details page.

The input symbol generated by either of these modules consists of a resource manipulation

request and the chosen link (4). The Request Preprocessor first validates the request with

respect to the chosen link and current application state, i.e. validates the hypermedia principle

for the generated request. For example, the /details page contains an <a> link only to

the /main page, so if the Application-level Logic generates an input symbol with any other

resource identifier, that input symbol would be marked as invalid and rejected. Next, the

Request Preprocessor stores and removes the link of the input symbol and adds a request

identifier to the request before forwarding it to the Request Processor on the server (5). The

server’s response therefore contains the request identifier and a representation of the identified

resource. Although request identifiers are a conceptual requirement for coupling responses

with requests, they are not currently used on the Web since requests and responses are related

through the TCP connection by which they are sent and received. The State Integrator uses

the link type of the chosen link, the corresponding server response and the current application
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state (6) to synthesize the next state (7).

Representations in the Application State are organized in a directed graph structure, where

one node is marked as a root node. A node in the graph symbolizes a resource representation,

while an edge symbolizes an embedding link from a representation to another representation

fetched based on that link, e.g. an <img> link. For each representation in the Application State

there is exactly one node, i.e. if two equivalent representations are fetched for embedding links,

then there is only one node in the graph for these representation and two edges leading to that

node from the parent nodes. Therefore, the root node resource identifier does not completely

define an application state, rather it is defined with all the representations and links in the

state graph. This definition of application state correctly models the relationship between

representations stored in the Application State while not duplicating nodes for equivalent

representations. Moreover, a graph-based definition of application state supports the existence

of cycles which are not forbidden in the sense that a representation may contain an embedding

link for itself. However, practical implementations of application state structures will disable

infinite cycles from overloading the system, e.g. Web browser have a fixed limit on the depth

of nesting <iframe> elements.

Based on the link type of the request related to the received response, the State Integrator

modifies the application state graph to include the response representation. For example, if

the /main page was fetched and the /script script was fetched afterwards via the <script>

link, the script representation would be added to the application state. On the other hand, if

the /details page was fetched afterwards via the <a> link, the received representation would

be the only node in the new application state. Figure 6 displays the described transformation

of the application state graph for the example Web application.

Fig. 6. Transformation of the application state graph for the example Web application

Finally, if the resource representation is an executable script, the State Integrator passes

the script to the Code-on-demand engine for execution (8). The executed script may then

examine and change the Application State (9) (10) without generating input symbols using

hypermedia links. For example, after the /script script is fetched and executed using a

JavaScript engine, it periodically modifies the application state by changing the color of a

link in the representation of the /main page.
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3.4 Uniform Interface Style Principle

REST is defined by four uniform interface principles: identification of resources, manipulation

of resources through representations, self-descriptive messages, and hypermedia as the engine

of application state. In this section we formalize these principles in the context of our model.

Resource identification is supported in the model through resource identifiers which are used

explicitly in input symbols and application states, where an input symbol consists of a resource

manipulation request and link, while the request contains a resource identifier, an operation

and a representation. For example, an input symbol IStoDetails for navigating to /details in

the Web application example could be represented as:

IStoDetails = ( Request : (operation : “GET”, resourceIdentifier : “/details”,

representation : “...”),

Link : (resourceIdentifier : “/details”, linkTypeIdentifier : “ < a > ”,

linkRelation : “”) ,

and the application state ASmain of a completely loaded /main page as:

ASmain = {Nodes :

[/main : (metadata : “...”, mediaType : “...”, data : “/main contents”),

/script : (metadata : “...”, mediaType : “...”, data : “/script contents”)],

Edges : [/main : [/script]]} .

For readability, we do not include full listings of representation data and metadata. On the

Web, metadata in general consists of HTTP headers, while the data is the body of HTTP

message.

Manipulation of resources through representations is supported in the model through ex-

plicit usage of representations in input symbols and application state. One of REST’s foun-

dations is the temporally varying mapping of resources to representations, which is supported

through the nondeterminism of the transition function. For example, because the /details

page contains an <img> link to either /cloudy or /sunny, the navigation from /main to

/details in the example Web application could be represented with the following transition:

δ(ASmain, IStoDetails) = {ASdetailsCloudy, ASdetailsSunny} , where

ASdetailsCloudy = {Nodes : [/details : (metadata : [...], mediaType : “text/html”,

data : “/details content with link to /cloudy”)],

Edges : []} ,

ASdetailsSunny = {Nodes : [/details : (metadata : [...], mediaType : “text/html”,

data : “/details content with link to /sunny”)],

Edges : []} .

The self-descriptive messages style principle is supported in the model through stateless

interaction, the limitation of using finite sets for system methods, media types, link types
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and link relations, and explicitly using these elements in the input symbols and application

state. For example, the IStoDetails input symbol shown above has a link type of <a> while the

representations in states ASdetailsCloudy and ASdetailsSunny are of the text/html media type.

Hypermedia as the engine of application state is supported in the model through the

transition function which advances the system from one state to another. Specifically, the

output of the transition function is defined only for pairs of states and input symbols for

which the input symbol may be derived from the current state or bookmarks. In other words,

the current state must contain a hypermedia link used to generate the next input symbol’s

resource manipulation request. For example, the transition function in the model of the

example Web application is undefined for state ASdetailsCloudy and IStoDetails because the

/details page does not contain an <a> link to itself:

δ(ASdetailsCloudy, IStoDetails) = {} .

Furthermore, we define that the initial application state is a single representation containing

links to resources which are the stable entry points for the system. For example, since the

example Web application’s entry point is the /main resource, the initial state of the model

ASinit could be represented as:

ASinit = {Nodes : [initial : (metadata : [...], mediaType : “text/html”,

data : “HTML page with an < a > link to /main”)],

Edges : []} .

Finally, steady and transient application states are supported in the model through accepting

and unaccepting states. The acceptance of a state is determined by Hypermedia-level Logic and

Protocol-level Logic; if these modules cannot generate any more requests based on hypermedia-

level and protocol-level links, the current application state is accepting. For example, in the

example Web application, the first representation in an application state is always of the

text/html media type meaning that all embedded resources, such as resources linked to

using <img> and <script>, should be fetched in order for the system to be in a steady state.

Therefore, the state ASmain is accepting (steady), while the state ASdetailsCloudy is unaccepting

(transient).

3.5 Code-on-Demand Style Principle

The code-on-demand principle is defined [2] as client-side execution of downloaded scripts

together with the possibility that these scripts extend the functionality of the client. We

formalize the code-on-demand principle in the model through ε-transitions i.e. if a script

executing on the client component changes the application state from A to B, then this

change is modeled with an ε-transition as δ(A, ε) = {B}. In the example Web application,

the /script script changes the color of the <a> link of the /main page which can be modeled

as δ(ASmain link blue, ε) = [ASmain link red] and δ(ASmain link red, ε) = [ASmain link blue], where

ASmain link red and ASmain link blue are the application states for the /main page in which the

link is colored red and blue, respectively.

It should be noted that the exact mechanism by which the script obtains data to change

the application state is beyond the scope of REST. Therefore, on the Web, it is irrelevant
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whether a JavaScript script randomly generates data or fetches data from the server using

the XmlHttpRequest mechanism.

4 Practical Usage and Limitations

Although our primary motive for researching formal approaches for modeling RESTful systems

is to enable simpler and better understanding of REST, another strong motive is to explore the

practical applicability of such approaches. In the following sections, we explore the potential

practical benefits and limitations of both the presented formalism and models of specific

systems. In particular, we are interested in practical aspects of the formalism in the context

of two main issues with developing RESTful systems: machine-to-machine (M2M) RESTful

interaction and software frameworks for RESTful development.

First, we present two models of real-world Web-based systems and explain insights into

properties of models of different classes of Web-based systems, such as Web applications

and Web APIs. Next, we address the state explosion problem inherent to state machine-

based models of complex systems. Furthermore, we address issues concerning who and how

develops such models of specific system, and provide insight for advancement of M2M RESTful

development. Finally, we explain how the presented formalism can be leveraged to help design

software frameworks for developing RESTful systems.

4.1 Models and Analysis of Web-based Systems

In this section, we apply the presented formalism to two real-world Web-based systems and

present their models. First, we present the model of a Web browser user agent using the

Google search Web application. Second, we present the model of a machine user agent using

the Twitter and GitHub APIs. Since the Web may be observed as a single, evolving large-scale

distributed hypermedia system, modeling the whole Web obviously is not feasible. Therefore,

the presented models describe only a part of the system relevant to the user agent’s goals.

Our motivation for modeling real-world Web-based system is not to find deficiencies in the

presented formalism. Rather, our motivation is to explore the modeling limits of using such

a simple formalism, and to gain insight. Specifically, as we explain in the final part of this

section, the presented models point to several problems of creating and using models, and to

typical properties of models of different classes of Web-based systems.

4.1.1 Model of a Web Browser Using the Google Search Web Application

In this section, we present the model of a system in which a Web browser user agent is

used to search for the JWE journal homepage using the Google search Web application.

The scenario consists of the user navigating to the Google search homepage located at

http://www.google.com, entering “JWE” as the search term, and using either the regu-

lar search or the “I’m feeling lucky” search functionality. We assume that the user is using a

modern Web browser with JavaScript execution enabled. Furthermore, we assume that the

Google “Instant Search” feature is disabled and that the autocomplete feature is enabled.

Finally, in order to keep the model reasonably readable, we ignore several links present on

the Google search homepage, such as the links pointing to the Google corporate pages and

advertising programs. Figure 7 presents the model of the described system, while a summary

of states, input symbols, and transitions of the presented model is given in Table 1.
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Fig. 7. FSM model of system used to search for the JWE journal homepage, using the Google

search Web application

Several interesting parts of the presented model may be noted. First, as indicated by the

transition 16
ε−→17, the interactions of users with the user agent’s interface, such as entering

text into the search-box, are modeled as ε-transitions. This approach for modeling user actions

is intuitive since user controls may be seen as having background code-on-demand scripts

which translate user-generated events into application state changes. Second, as indicated by

transitions 1
c−→2

b−→4 and 1
b−→3

c−→4, the order by which resources linked to by embedding

Table 1. Summary of states, input symbols and transitions for the FSM model presented in Figure 7

State or
transition

Explanation

0 Initial state containing the link to the Google search homepage www.google.com

0
a−→1

Fetching of Google search homepage using an HTTP GET www.google.com request, and
integration of response as the new root node in the application state.

1 Media type processor parsing HTML links in the application state.

1
c−→2

b−→4
or

1
b−→3

c−→4

Hypermedia-level Logic detects <img> links and fetches embedded im-
ages using HTTP GET ssl.gstatic.com/gb/images/b 8d5afc09.png and GET

www.google.com/images/srpr/logo3w.png requests containing the Google doodle
image and sprites. The State Integrator integrates responses into application state as
new child nodes of the homepage representation node.
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Table 2. (Table 1 Continued) Summary of states, input symbols and transitions for the FSM

model presented in Figure 7

State or
transition

Explanation

4
ε−→5

d−→6

Upon page load, an inline JavaScript script dynamically adds a <script> link (ε)
to the homepage representation. The script is then fetched using HTTP GET

www.google.com/extern js/f/.../uCdHgKP-Nm8.js, added to the application state as a
new child node of the homepage representation node, and executed.

6
ε−→7

e−→8,

8
ε−→9

f−→10,

10
ε−→11

g−→12,

12
ε−→13

h−→14,

14
ε−→15

i−→16

Code-on-demand JavaScript script dynamically adds several <script> and
<img> links into the Google search homepage representation. Hypermedia-level
Logic automatically fetches embedded resource representations using HTTP
GET www.google.com/client 204, GET clients1.google.com/generate 204, GET

www.google.com/images/swxa.png, GET www.google.com/images/nav logo91.png,
and GET ssl.gstatic.com/.../sem 3498c5d919c7af5cee92648596f33900.js requests.
Fetched representations are added to the application state as new child nodes of the
homepage representation node, and JavaScript scripts are executed.

16
ε−→17 The user enters the letter “J” into the search-box.

17
ε−→18

j−→19

JavaScript script detects the letter “J” in the search-box and adds a <script> link
into the homepage representation, for fetching autocomplete results via JSON-
P [57]. The added <script> element resource is fetched with an HTTP GET

clients1.google.com/complete/search?client=hp&sugexp=kjrmc&cp=1&gs id=8&q=J

request, integrated into application state, and executed as a code-on-demand script.

19
ε−→20

The script executed in the previous step contains the autocomplete results for the letter
“J” and adds them to the homepage representation.

20
ε−→21,

21
ε−→22

k−→23,

23
ε−→24

The user enters the letter “W” into the search-box. JavaScript script detects
the change in the search-box text and adds a <script> element for fetching
the autocomplete results for “JW”. The script is fetched using an HTTP GET

clients1.google.com/complete/search?client=hp&sugexp=kjrmc&cp=1&gs id=8&q=JW

request, integrated into the application state, and executed. The executed script adds
the autocomplete results into the homepage representation.

24
ε−→25,

25
ε−→26

l−→27,

27
ε−→28

The user enters the letter “E” into the search box. JavaScript script detects
letters “JWE” in the search-box and adds a <script> element for fetching the
autocomplete results for “JWE”. The script is fetched using an HTTP GET

clients1.google.com/complete/search?client=hp&sugexp=kjrmc&cp=1&gs id=8&q=JWE

request, integrated into the application state, and executed. The executed script adds
the autocomplete results into the homepage representation.

28
m−→29

The user presses the “Search” button, initiating the <form> link element.
The Application-level Logic uses the <form> element to make an HTTP GET

www.google.hr/search?hl=en&source=hp&q=JWE&oq=JWE&aq=f&aqi=g6g-s2g2&aql=1 re-
quest with the search query passed as a URI query parameter. The returned response
contains the Google search result page for the “JWE” string. The response is integrated
into the application state by replacing the existing representations as the single new root
node. In the following steps, the browser’s Hypermedia-level Logic would continue to
fetch the embedded images and scripts for the search results page.

28
n−→30

o−→31

The user presses the “I’m feeling lucky” button, initiating the
<form> link element as before. However, the HTTP GET

www.google.hr/search?hl=en&source=hp&q=JWE&oq=JWE&aq=f&aql=1&gs sm=ib&btnI=1

request sent to the server (n) contains a query parameter defining that this is an
“I’m feeling lucky” type of search. The server response is an HTTP 302 Found

response containing an HTTP Location header with the value of the JWE home-
page URI. Therefore, the browser’s Protocol-level Logic generates an HTTP GET

http://www.rintonpress.com/journals/jwe/ request (o) to fetch the JWE journal
homepage. In the following steps, the browser’s Hypermedia-level Logic would then
continue to fetch the embedded images and scripts for the JWE homepage.
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links are fetched does not affect the operation of the application. This shows that the graph

data structure chosen for storing the application state correctly models the expected result,

i.e. the application state graphs of immediate steady states are equivalent for any order of

inserting embedded resources. Third, as indicated by the transition 4
ε−→5, code-on-demand

scripts may transfer the system from a steady state to a non-steady state by dynamically

adding new embedding links into the application state. In such situations, the Hypermedia-

level Logic automatically fetches the embedded resources representations in order to return

the system to a steady state. Fourth, as indicated by transitions 25
ε−→26

l−→27 and 27
ε−→28,

the Google search Web application uses the JSON-P mechanism for dynamically updating

the application state using server data, rather than using XmlHttpRequest, and the JSON-P

mechanism is correctly formalized by the model.

4.1.2 Model of a Machine Agent Using the GitHub and Twitter APIs

In this section we present a model of a system in which a machine-driven user agent uses the

Twitter [53] and GitHub APIs [58]. The goal of the agent is to search for tweets containing the

term “JWE” and collect links pointing to those tweets. After collecting the links, the agent

stores the links into a GitHub gist by forking an existing gist with the description “JWE”

and appending the links to the gist. The presented model does not include the authentication

details for using the GitHub API, in order to focus on application-relevant states.

The FSM model for the described system is presented in Figure 8, while a summary of

states, input symbols, and transitions of the presented model is given in Table 3.

Fig. 8. FSM model of system used to search for and store tweets mentioning “JWE”, using the

Twitter and GitHub APIs

Some of the interesting properties of the presented model are highlighted hereafter. First,

all state transitions are navigational i.e. resources of both APIs return representations with-

out links for embedded resources. Second, although the GitHub API uses a custom non-

standardized JSON-based hypermedia type for representations, it is possible to define a cus-

tom Media Type Processor to parse and extract links from such representations. Similarly,

it is possible to define custom link types for such custom media types in order to validate

requests and integrate responses into the application state, as required by the FSM formal-

ism. Next, API resource representations do not use code-on-demand scripts for changing the

application state, rather they rely strictly on hypermedia-driven state change. Finally, as
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Table 3. Summary of states, input symbols and transitions for the FSM model presented in Figure 8

State or
transition

Explanation

0
Initial state containing links to the Twitter API search resources and the GitHub API
gists resources.

0
a−→1

The machine agent’s Application-level Logic makes an HTTP GET

search.twitter.com/search.atom?q=JWE request to fetch the tweets containing
the phrase “JWE”, and integrates the response ATOM document as the single new root
node of the application state.

1
The Media Type Processor parses the search response document with an ATOM parser,
while the Application-level Logic stores the found tweet links into internal storage.

1−→2
The Application-level Logic resets the application state to the initial state in order to
obtain the entry point link for the GitHub gists API.

2
b−→3

The Application-level logic makes an HTTP GET api.github.com/gists request to fetch
the list of the user’s gists. The response is JSON document which is integrated into the
application state as the single new root node.

3
The Media-Type Processor parses the received JSON document using a custom media
type parser, while the Application-level Logic finds the link for the gist described with
“JWE”.

3
c−→4

The Application-level Logic makes an HTTP POST api.github.com/1327010/fork to cre-
ate a new fork of the “JWE” gist. The response is an HTTP 201 Created message with
a Location header linking to the resource identifier of the created fork. The response is
integrated into the application state as the single new root node.

4
d−→5

The Application-level Logic detects the link for the newly created fork and makes an
HTTP GET api.github.com/gists/1327013 request to fetch the gist content and inte-
grates the response into the application state as the single new root node.

5
The Application-level Logic appends the internally stored tweet links to the downloaded
gist content.

5
e−→6

The Application-level Logic makes an HTTP PATCH api.github.com/gists/1327013 re-
quest to update the gist fork with the new content.

indicated by the transition 1−→2, because there are no links in the Twitter API resource

representation pointing towards GitHub resources, there is a discontinuation in following hy-

permedia links for achieving application goals. The machine agent application-level logic is

aware of this discontinuation and therefore resets the application state to return to the initial

state containing links to well known entry points, including the GitHub gists API link.

4.1.3 Insights from Modeling Real-World Systems

In this section, we present insights from the previously presented models of real-world Web-

based systems.

Several questions arise concerning the practical applicability of models. First, models of

complex systems will be very large due to a large number of representations, which affects

the number of application states, as well as a large number of requests generated for links,

which affects the number of input symbols. There are several reasons as to why the number

of representations and requests will be very large: resources of interest link to other resources

which increases the size of the observed system, the representations of resources may have
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a high frequency of change over time, and the set of request generated by user-driven user

agents is virtually unbounded. For example, the Web is a well connected system in which a

user can navigate to almost any page from any other page in several navigation steps. As a

partial solution we described in this section, the formalism permits that only a part of the

global hypermedia system is modeled, thus focusing on states and input symbols concerning

application goals and significantly reducing the model size. Furthermore, in the following

section, we explore several possibilities of reducing the size of FSM models by discovering and

aggregating equivalent states, with different approaches for defining state equivalence.

Second, the question arises as to who develops such models, how, and when, and what

their practical usage would be. We explore these questions in more detail in Section 4.3.

Third, while resources of most RESTful systems will be well connected using hyperlinks,

there still may be discontinuations in hyperlinks preventing the reaching of application goals.

As we demonstrate in Section 4.1.2, the Twitter and GitHub API resources are not mutually

connected with hyperlinks, although they do contain hyperlinks for guiding user agents within

their API domain. As we describe, a strategy for overcoming this issue is in bookmarking well

known entry point links for starting an application flow within one API domain, and using

the bookmarks when faced with discontinuations. In the following sections, we explore some

of these ideas further in the context of M2M interaction.

Finally, the presented models highlight properties of models of different classes of Web-

based systems. For example, simple “Web 1.0” systems will usually only have a single level

of embedded resources in the application state graph, typically for embedding images. Fur-

thermore, “Web 1.0” systems will typically not use code-on-demand scripts to change the

application state, i.e. models of such systems will not have ε-transitions. In contrast, “Web

2.0” systems typically will use code-on-demand scripts to change the application state, such

as using XmlHttpRequest for fetching data from the server and dynamically changing the user

interface. Furthermore, “Web 2.0” systems are characterized by scripts dynamically adding

new hyperlinks for embedding resources, such as images and JSON-P scripts. By observing

the application state graph, “single-page” Web applications may be detected as graphs in

which the URI of the root representation never changes. Similarly, “widget-based Web ap-

plications” using nested <iframe> elements may be detected as having more than a single

level of embedded representations in the application state graph. Finally, “Web API”-based

systems are characterized by representations not having embedding links, i.e. all links are nav-

igational, and not using code-on-demand scripts, similar to “Web 1.0” systems. Furthermore,

models of “Web API”-based systems will have a greater degree of discontinuations as they

are almost never connected with resources outside their domain, and often not well connected

with other resources within their domain. Therefore, while “Web API” resources are exposed

using URIs, they are rarely hypermedia-driven.

4.2 Model Size and Minimization

In this section we address issues which may be raised concerning the finite set limitations of

the presented formalism and the size of models of complex systems.

First, because RESTful systems are not restricted to a finite number of states or input

symbols, finite-state machines are not a completely suitable model. The ε-NFA model may

be relaxed so that the set of states may be infinite or even not countable or, alternately, other
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kinds of models for describing infinite-state machines may be used. One possible candidate

are labeled state transition systems [59], a formalism similar to finite-state machines which

permits that the number of states and transitions be infinite. While this approach is directed

at supporting infinitely large models, in our opinion, practical use cases will likely look to

reduce the number of states of system models, for which there are other alternatives.

In essence, our formalism inherits the state explosion problem from the underlying FSM

formalism; the number of states in models of complex systems is extremely large. As explain

in the previous section, the reason for a large number of states is the large number of possible

representations which constitute application states. In order to reduce the state explosion

problem, in the rest of the section we explore tree approaches, which may be used separately

or combined:

1. using generic FSM-based algorithms for detecting and removing unreachable states,

2. using generic FSM-based algorithms for detecting and merging equivalent states, and

3. defining custom state equivalence relations based on the contents of the application

state representations.

First, the generic formalism of finite-state machines defines that two state machines are

equivalent it they accept the same language, where a language is defined as the set of all pos-

sible sequences of input symbols over some alphabet [33]. Applying a reachability algorithm

to the initial state of the FSM and removing states which are not reachable will therefore

not affect the operation of the FSM. This analysis may also be used for error detection; if a

state which should be reachable is discovered as unreachable, there is a discontinuation in the

expected hypermedia links of available representations.

Next, the generic formalism of finite-state machines defines two states S1 and S2 as equiv-

alent if for every sequence of input symbols, the FSM either accepts the sequence starting

from both states or rejects the sequence starting from both states. In other words, states

S1 and S2 are considered equivalent if they accept the same sequences of input symbols, and

therefore may therefore be merged into a single state without affecting the operation of the

FSM. We apply this technique to the example weather Web application presented in Section

3.2 and present the minimized model in Figure 9.

As show, states 2 and 3 are recognized as equivalent and merged since they are both

acceptable and both have the same nondeterministic transition to states 4 and 5 for input

symbol (c). However, states 4 and 5 have not been recognized as equivalent because state 4

has a transition only for input symbol (d) for fetching the sunny weather image, while state

5 has a transition only for input symbol (e) for fetching the cloudy weather image. States

6, 7, 8, 9, 10, and 11 have all been merged since they transition either to themselves for

ε-transitions used by code-on-demand scripts for fetching temperatures, or back to state 1 for

input symbol (a) for navigating to the main page. As can be seen on the image, the number

of states in the model is reduced from 12 to 6 states.

This example also illustrates the meaning of the generic FSM state minimization technique

in the context of RESTful systems. The technique focuses on the acceptance of states and

on the input symbols for supported transitions of states, while at the same time ignores the

meaning of each state in terms of representation content. Since the set of possible input
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Fig. 9. Generic FSM minimization of example weather Web application model

symbols for a state depends on the set of links available in the representations, it may be

said that this minimization technique merges states S1 and S2 if the set of links in their

representations is equal. In other words, the technique observes the requests which a user

agent may generate at two states in order to determine state equivalence.

While this result intuitively makes sense and significantly reduces the number of states,

there are several drawbacks. First, since representation links define the set of input symbols

leading out of each state, changes in link resource identifiers will result in different input

symbols and consequently nonequivalent states. An example of such two states are states 4

and 5 which contain different identifiers in links for fetching weather images, while the rest of

the content is identical. Therefore, generally stated, in situations in which different resource

identifiers point to resources which fulfill the same application functionality, differentiating

states based only on link identifiers is too fine-grained. Second, in some cases, the technique

may be too coarse-grained, for example when differentiating states with the same links, but

different content, is needed. For example, states 6, 7, 8, 9, 10, and 11, all have the same links

and are merged, but have different weather images and different temperatures, which may

be useful criteria for differentiating application states. Similarly, the technique will merge

states which have the same content and links, even though the root representations of their

respective state graphs were fetched from different resources.

Therefore, in the context of RESTful systems, it may be useful to define custom state

equivalence relations [60] based on the contents of the application state. Such equivalence

relations may be defined over any part of the application state graphs, such as:

1. aggregate states with equal root representation identifiers. This approach is often found

in descriptions of Web applications in the form “one page is one state”, as described in

Section 2.2 for some existing research approaches.

2. aggregate states based on link relations of links in representations, rather than by link

identifiers. This approach is the basis of descriptions of application-domain protocols

based on link relations, as described in [61] [62].

3. aggregate states based on representation content.
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In Figure 10 we present a minimized model of the example Web application by aggregating

states with the same root representation resource identifier, states which have a temperature

higher than 27◦C, and states which have a temperature lower than 27◦C. As shown, this

aggregation scheme reduces the number of states from 12 to 4.

Fig. 10. Minimization of example weather Web application model based on custom equivalence

relation

Similar aggregation-based approaches may be utilized with the goal of reducing the number

of input symbols of a model, which we do not describe in more detail.

4.3 Creating and Using Models of Specific Systems

Some of the core questions of the practical applicability of the presented approach are con-

cerned with benefits of creating models of specific systems, as well as who creates them, when,

where and how. In this section we discuss these questions.

There are several practical benefits of creating specific models. First, creating models for

existing systems benefits their documentation and understanding as one of the cornerstones of

modern software engineering. While a graphical notation may become unreadable for complex

systems, this problem may be alleviated with good user-interface design for navigating such

visualizations, or textual notations may be used. Second, creating models as specifications for

future systems enables model driven development [63]. It is feasible to create a code generator

that inputs a FSM model and application-specific goals, as desired states, and outputs the

code of a machine agent that fulfills those goals. Third, creating models of existing systems

enables model verification using temporal logic. This aspect of using state machine models

is well described in previous research [50] [64] [65] [66], in which the CTL temporal logic is

used for model checking, such as reachability and safety analysis. For example, formal model

verification may be used for finding broken links or even more complex sequences of specific

application states.

Since RESTful systems are in general developed and executed in a decentralized manner,

a complete model for a system in practice will not be developed by a single party, such as

a client-side developer, or a server-side developer. The reason why a developer of server

resources is not capable of modeling the complete system is because she is only aware of
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resources offered by the server, their representations, and the possible links between those

resources. However, server developers cannot anticipate all possible representations sent by

user agents, or that user agents may be using multiple server components in order to achieve

their application goals. Similarly, the reason why a client developer is not capable of modeling

the complete system is because server functionality is exposed through interlinked resources,

for which only the entry point resource is known in advance, while the links and resource

representations may change at run-time. In other words, a user agent is aware of the part of

the application states it has explored in one possible execution flow. Therefore, the system

model is divided between client and server components, and the model changes over time due

to server evolution.

While this conclusion may be expected, its implications with regard to practical appli-

cations of the model may not be as clear and therefore we explore them in the following

paragraphs. First, if there is a need for creating a fairly complete model of a system, there

are two possible strategies. Since the knowledge for creating the model is divided between

client-side and server-side developers, one approach is for the two parties to work together on

creating an overall system model. For example, on the Web, many APIs are described in terms

of fixed resource identifier templates, resource representations and links between resources.

Two examples of such APIs are the GitHub [58] and Twitter APIs [53]. Therefore, a client

developer can use such documentation to develop a complete system model. However, the

premise of this approach is that the description of resources is stable, which reduces system

modifiability, a key benefit of REST.

Another strategy is to apply crawling techniques to discover the model at run-time. Al-

though the concept of crawling is well know and researched, most crawlers do not create

models compatible with the presented FSM formalism. However, recent research resulted [52]

in a technique for crawling of rich Internet applications (RIAs) which produces a model rea-

sonably compatible to ours. The technique utilizes a hypercube model of possible application

states and events as transitions between states. The crawler then explores the state space

and amends the model accordingly. The similarity between the models created using the

crawling technique and the models created using our formal approach is based on the same

view of the application state as the set of representations. In other words, a change in any

of the representations in the application state is translated into a transition to a new state.

However, there are also differences between the crawled and manually created models, the

biggest of which is that the crawled model does not account for nondeterministic transitions.

Finally, we focus the discussions about challenges of creating models from this section, and

the previous section on state minimization in order to provide insight for guiding machine

agents in machine-to-machine interaction. Machine agents are user agents with specific ap-

plication goals, typically within an application domain, e.g. fetching the latest 20 tweets from

a user’s Twitter timeline, and the popular Restbucks example for ordering coffee [61]. Devel-

oping such machine agents therefore requires knowledge about the contract for using a server

resource: the protocol and media types of representations. Additionally, for implementing

the Application-level Logic of such agents, knowledge about the semantics of following each

link is required in order to guide the agent through the state space of the system toward the

goal state.

Therefore, having a state model of the whole system would help in implementing such
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machine agents. However, as we explained in this section, client-side developers do not have

enough information to create an overall system model. On the other hand, as we explained

in Section 4.2, the user agent does not need to know the entire state space, rather just the

path leading to the goal state. This path may be seen as a composition of segments, each of

which is related to a domain of a particular service. Within each such domain, the service

itself contains the information to construct the state-transition segments representing possible

service functionality. For example, a service for buying books may expose functionality for

ordering books and putting books in a shopping basket, each of which requires a predefined

sequence of state transitions. Therefore, a possible solution for constructing machine agents

is for servers to provide these models, and as we explained in this section, this may be

done by describing the complete service API. On the other hand, the model may change

dynamically due to the continuous evolution of resource representations, making such fixed

API descriptions less usable.

As we explain in Section 4.2, the user agent does not need to know the exact state space

in order to traverse it, rather an aggregated view of it from the perspective of application-

relevant information. Therefore, in order for client-side developers to construct machine

agents, server-side developers needs to provide such a minimized and aggregated view of

state-transition segments for executing the offered services. Figure 11 presents a generic view

of this situation; a machine agent’s goal is reaching state 3, e.g. buying a book, and therefore

needs a guide for traversing the state space which provides several possible links for continuing

from the current state 2, e.g. the entry state of a bookstore service. The server exposes two

functionalities through its resources, each may be described with a state-transition segment

for using it, and one segment ending in the desired state 3. Therefore, the requirement is that

the server describes the segments, and that the user agent downloads the descriptions and

uses them to implement the Application-level Logic.

The combined issues of describing the server functionality and the transfer of this descrip-

tion to the user agent is one of the open issues of developing RESTful machine-to-machine

systems. In essence, the server needs to describe the abstract states representing steps of using

a functionality as well as links which should be chosen in each state to reach the goal. One

approach, proposed in [61] [62], is based on defining a set of application-specific link relations

to describe the semantics of links in representations, and on defining the order of using such

typed links in order to reach a goal. These link relations and usage orders would be defined

in human-readable documentation for the service, and agent developers would implement the

agent’s Application-level Logic according to this documentation. However, this approach re-

quires that developers read documentation and additionally hinders the evolvability of the

service because its description is delivered statically, rather than on demand.

We believe that the formalism presented in this paper provides insight for improving

the previous solution, based on model minimization through state aggregation, and on on-

demand model segment transfers. Just as servers should be able to on-demand instruct user

agents how to construct resource identifiers based on identifier templates [67], we believe

that servers should be able to on-demand instruct user agents how to navigate through their

application-level hypermedia processes. In other words, instead of a static description of link

relations within service documentation, we propose that the user agent fetches the description

when needed at run-time, in a machine-readable format. Machine-agent developers would
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Fig. 11. View of situation for guiding machine agents using aggregated model segments

then only need to know the entry point for requesting such descriptions and implement the

Application-level Logic to receive the description, parse, and integrate it as new rules to guide

its execution. Therefore, the service is free to evolve as long the description of the machine-

readable description evolves accordingly and the entry point for fetching the description is

kept stable. Since we are currently working on an implementation of such an approach, we

do not describe work-in-progress in more detail.

4.4 Software Frameworks

Developing systems that conform to the principles defined by REST is difficult, although

REST principles have been known for more than a decade. We believe that one of the main

issues with RESTful system development is the lack of adequate software development frame-

works. Software frameworks are one of the foundations of modern information systems; they

significantly reduce the complexity of software development by providing implementations of

core technologies and guiding the development process. However, most existing frameworks

for “RESTful” Web development are strictly technology-oriented, rather than architecture-

oriented. Technology-oriented frameworks provide a flat stack of technology primitives for

development but do not incorporate REST principles. As a consequence, developers imple-

ment these principles for each application, and often break principles due to a lack of software

engineering guidance for their implementation. This is especially true for developing client-

side components, such as user agents, on which REST principles are focused on.

In our opinion, software frameworks should provide easy-to-understand development con-

cepts based on formal models of RESTful systems. Without using such models, framework

developers have no guidance for developing software engineering abstractions that encapsulate

REST principles. Moreover, as noted in [68], separating software engineering practice from
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the related theory hinders its advancement. Therefore, we believe that the approach for mod-

eling RESTful systems presented in this paper offers many practical guidelines for designing

software frameworks for client-side RESTful system development, including Web-based sys-

tems. This premise is further supported by the two recently developed software frameworks,

Restfulie and RESTAgent, which support several key concepts highlighted in our FSM-based

approach. In Restfulie [69], client component development is based on extracting links from

representations using application state transitions as the underlying application logic devel-

opment model. Similarly, RESTAgent [70] defines different link types, such as navigation

and embedding, to enable different transformations of application state. Furthermore, sev-

eral research efforts, such as [71] and [28], are focused on building and formalizing platforms

for Web-based systems with the goal of better understanding such systems and their greater

modifiability.

The presented FSM-based formalism provides the following insights for designing software

frameworks for RESTful development. First, because it is based on finite-state machines,

a formalism known to most Web engineers, we believe that our approach provides easy-to-

understand and practical guidelines for encapsulating REST principles. Second, we believe

that the presented approach, especially the formal definition of key system elements, their

interfaces, and their interaction, offers insight for greater decoupling of system development

activities. Specifically, we propose that RESTful system development should have three levels

of concerns: the framework layer, the architecture layer and the application layer. Figure 12

shows which modules of our FSM-based formalism should be developed in which layer and

by which group of developers.

Fig. 12. Layered separation of concerns in a RESTful framework based on FSM model guidelines

The framework layer contains general REST components which are present in every REST-

ful system and always have the same functionality. Therefore, these components are com-

pletely implemented in the framework and are reusable for all architectures and applications.

Specifically, framework developers implement the generic RESTful system engine responsible

for executing the overall FSM cycle, as described in Section 3.1. Furthermore, this layer pro-

vides the Application State and Link Storage modules, for which the required data structure

guidelines are also explained by the FSM model, as well as the Request Preprocessor mod-

ule. Finally, the framework layer defines the necessary interfaces for implementing protocols,
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media types, link types, state integrators, and code-on-demand engines, in architecture and

application layers. Again, the elements of the FSM model, as defined in Section 3.1, provide

guidelines for defining these interfaces as they specify the necessary inputs and outputs. For

example, a link type definition should be defined with a link type identifier, a request validator

function and state integrator function, each of which has a well defined interface.

Second, the architecture layer contains implementations of protocols and media types

which may be reused for many different applications. Specifically, using interface definitions

in the framework layer, architecture developers implement Media Type Processor, Protocol-

level Logic, Hypermedia-level Logic, and State Integrator modules, as well as Code-on-demand

engines which execute different types of scripts. For example, this layer would contain the

implementation of the HTTP and CoAP protocols, HTML and ATOM media types, and the

JavaScript code-on-demand engine.

Finally, the application layer contains implementations of application-specific logic either

for client components or for server components. Specifically, client-side developers implement

the Application-level Logic module, while server-side developers implement Request Proces-

sors. The presented FSM model suggests the use of rules as an appropriate metaphor for

implementing the Application-level Logic, where each rule has access to the application state

and may generate the next request.

With the presented layered scheme, framework developers are responsible for understand-

ing and implementing generic principles of REST and providing useful software abstractions

for these concepts to the layers above. In other words, this scheme allows that the work of sup-

porting REST principles is divided between application developers, architects and framework

developers. Therefore, application developers are not burdened with details of REST or un-

derlying protocols and media types. Furthermore, the implementation of both the framework

layer and the architecture layer is combined for both client-based and server-based compo-

nents, while the implementation of the application layer is divided between the client-side and

server-side developers, as expected by developers for each layer.

Finally, we believe that this layered framework scheme promotes decentralized develop-

ment inherent for distributed hypermedia systems, and their modifiability. Using well defined

interfaces for each element, the layered scheme promotes independent development of elements

from any layer of the system. For example, it should be easy for an architecture developer to

implement support for new protocols, such as CoAP, and publish that implementation on the

Web. At the same time it should be equally easy for other architects or application developers

to download such an implementation and integrate it into their system.

5 Conclusion and Future Work

The study of architectural styles is an essential part for understanding and improving infor-

mation systems. As the World Wide Web is the most important global information system,

the study of its foundational architectural style, Representational State Transfer (REST),

is of equal importance from both a theoretical and a practical perspective. Our analysis of

previous research in this field has shown that formal models of RESTful systems are unre-

searched, consider only some core principles of RESTful systems while ignoring others, and

are focused on modeling hypermedia systems in general and not RESTful systems.

In this paper we propose a formalism for modeling RESTful systems based on nonde-
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terministic finite-state machines with epsilon transitions (ε-NFA). We show that ε-NFAs are

a natural fit for modeling REST principles which are primarily concerned with exchange of

representations using states and transitions. Specifically, the states of the ε-NFA represent

the application states which the system may be in at some point of execution, where each

application state is represented with the set of resource representations obtained by the user

agent. The input symbols of the ε-NFA represent the set of resource manipulation requests

while the transition function models the hypermedia links between resources i.e. the request

which may be issued at some state. In order to support the temporally varying nature of

resource representations, transitions may be nondeterministic, while ε-transitions are used to

model client-side execution of code-on-demand scripts. The client-server style of REST is

therefore naturally modeled by storing the current ε-NFA state and generating input sym-

bols on client components while the transition function is divided between client and server

components. Client components are responsible for transforming input symbols into requests

and integrating resource representations into the application state, while server components

are responsible for processing requests into responses. Therefore, with respect to the pre-

sented model, a system may be called RESTful if it can be represented with an ε-NFA and if

sequences of generated input symbols do not lead the ε-NFA into an empty error state.

Furthermore, we show that the presented formalism offers many insights related to the

Web engineering practice and open problems in RESTful system development. By presenting

models of two real-world Web-based systems, we explore the challenges of developing such

models and their practical applications. In particular, we address the state explosion problem

inherent to modeling complex systems using state machines, and provide several alternatives

for state space minimization through aggregation. Finally, we use the presented formalism to

draw guidelines for designing frameworks for RESTful system development.

Our research gives the following insights and areas for future work. First, it would be

useful to explore the possibility of extending the presented formalism to explicitly accounts

for currently unaddressed principles of RESTful systems: the layered and cacheable princi-

ples. Furthermore, we are working on utilizing the FSM formalism for modeling composite

and hierarchical RESTful systems. In such system, a client component exposes new resources

based on aggregate functionality from locally executing code-on-demand scripts and remote

resources. Finally, as explained in the previous section, extending the model to support

on-demand machine-to-machine interaction is a promising direction. In essence, server com-

ponents should be able to on-demand provide client components with an aggregated view

of the hypermedia state machine segment that implements the application-domain flow of

interest to the user agent, such as buying books on Amazon.

In more practical aspects, we have started with the implementation of a software frame-

work for building RESTful client components, based on the presented formalism and frame-

work design guidelines. Furthermore, as described in the previous section, we are interested

in implementing a code generator for model driven development based on FSM specifications,

as well as a crawler for creating models of existing systems. We are also working on an im-

plementation of the machine-to-machine interaction model based on on-demand transfer of

aggregated state machine segments from server components to client components.
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