
15

A Methodology for SIP and SOAP Integration Using
Application-Specific Protocol Conversion

GORAN DELAC, IVAN BUDISELIC, and IVAN ZUZAK, University of Zagreb
IVAN SKULIBER and TOMISLAV STEFANEC, Ericsson Nikola Tesla

In recent years, the ubiquitous demands for cross-protocol application access are driving the need for deeper
integration between SIP and SOAP. In this article we present a novel methodology for integrating these
two protocols. Through an analysis of properties of SIP and SOAP we show that integration between these
protocols should be based on application-specific converters. We describe a generic SIP/SOAP gateway that
implements message handling and network and storage management while relying on application-specific
converters to define session management and message mapping for a specific set of SIP and SOAP communi-
cation nodes. In order to ease development of these converters, we introduce an XML-based domain-specific
language for describing application-specific conversion processes. We show how conversion processes can be
easily specified in the language using message sequence diagrams of the desired interaction. We evaluate
the presented methodology through performance analysis of the developed prototype gateway and high-level
comparison with other solutions.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols;
C.2.4 [Distributed Systems]: Distributed Applications; H.3.5 [Online Information Services]: Web-
Based Services

General Terms: Design, Languages

Additional Key Words and Phrases: Protocol conversion, SIP, SOAP, design concepts, middleware,
specialized application languages

ACM Reference Format:
Delac, G., Budiselic, I., Zuzak, I., Skuliber, I., and Stefanec, T. 2012. A methodology for SIP and SOAP
integration using application-specific protocol conversion. ACM Trans. Web 6, 4, Article 15 (November
2012), 28 pages.
DOI = 10.1145/2382616.2382618 http://doi.acm.org/10.1145/2382616.2382618

1. INTRODUCTION

Rapid development of Internet infrastructure and businesses in the last decade has
been accompanied by emergence of numerous diverse services. Despite the differ-
ences in technologies used for service development, growing user demands are pushing
for service personalization and integration. Various Internet protocols for service con-
sumption are converging as Web developers strive to integrate services across tech-
nology domains. A good example of such an effort is the integration of the Session
Initiation Protocol (SIP) and H.323 Internet Telephony signaling protocols [Ho et al.

This work is supported by the Ministry of Science, Education, and Sports of the Republic of Croatia through
the Computing Environments for Ubiquitous Distributed Systems (036-0362980-1921) research project.
Authors’ addresses: G. Delac (corresponding author), I. Budiselic, and I. Zuzak, Faculty of Electrical Engi-
neering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia; email: goran.delac@fer.hr;
I. Skuliber and T. Stefanec, Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1559-1131/2012/11-ART15 $15.00

DOI 10.1145/2382616.2382618 http://doi.acm.org/10.1145/2382616.2382618

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:2 G. Delac et al.

2001]. The proposed architecture introduces a converter which translates between SIP
and H.323 operations enabling multiparty video conferencing. Another interesting ser-
vice integration example is SIP-XMPP protocol conversion [Saint-Andre et al. 2007],
which enables interworking between instant messaging systems that adhere to RFC
2779 [Day et al. 2000]. In both cases, the key to building an interoperable system
across different protocol platforms is to properly define a mapping between semanti-
cally equivalent protocol elements. However, intuitive protocol conversion is possible
only if both protocols share a certain amount of functionality. For example, SIP and
H.323 are highly compatible for protocol conversion since they share the same purpose
as signaling protocols for Internet Telephony services.

The aim of this article is to address protocol conversion issues for application-layer
protocols. Application-layer protocols usually lack semantic equivalence due to sig-
nificant differences in their purpose. Specifically, the presented research focuses on
exploring integration possibilities of SIP and SOAP.

SIP [Rosenberg et al. 2002] is an application-layer textual protocol designed for es-
tablishing and managing sessions. The protocol is used in the 3GPP’s IP Multimedia
Subsystem (IMS), an architectural framework for delivering IP services in telecommu-
nications networks. SIP itself does not define how IP services are created or how to
perform semantically proper data exchange among them. In practice, it is most com-
monly used to control real-time multimedia sessions such as Internet Telephony calls,
video conferences, and instant messaging. SIP provides a flexible platform for imple-
menting various types of sessions by working in conjunction with other protocols. In
other words, SIP offers primitives that can be used to construct various services ac-
cessible over the Internet. For example, SIP is used as a signaling protocol for VoIP
[Rosenberg and Shockey 2000] and therefore serves as a backbone for the Internet
Telephony service. Basic SIP primitives include management of user presence and
location, and establishment and management of service sessions. Recent SIP integra-
tion efforts include an HTML5 client simpl5 [Doubango 2012] which enables HTML5-
compliant browsers to connect to SIP or IMS networks. Using this integration it is
possible to make and receive audio/video calls or utilize instant messaging from the
browser.

Widely accepted in enterprise business solutions, the Web Services (WS) [Curbera
et al. 2002] protocol stack is emerging as a de facto standard used for exposing ser-
vices. The communication with WS services is based on SOAP, a request-response
RPC message exchange protocol [W3C 2007a]. SOAP messages are XML-based doc-
uments transferred using HTTP or SMTP protocols. WSDL documents describe the
structure of SOAP messages for a specific service and therefore enable WS services to
be loosely coupled with the client side [W3C 2007b]. However, the basic WS protocol
stack does not address signaling issues, meaning there are no formal rules for creat-
ing and maintaining sessions and transactions. Proposals to add certain aspects of
transactions and signaling into the WS standard exist. These include WS Composite
Application Framework (WS-CAF) [OASIS 2011] and WS Choreography Description
Language [Kavantzas et al. 2005]. However, these proposals only provide guidelines
for implementing transaction and signaling management and are not widely accepted
in the industry.

One of the key motives for the integration of SIP and SOAP can be found in
existing infrastructure that employs these protocols. On one hand, the IMS archi-
tectural framework is one of the cornerstones of telecommunication networks. IMS
offers standardized solutions for charging, billing, and presence—functionalities that
are important for commercial services, especially mobile ones. However, IMS does
not standardize means of exposing generic, Internet-based services. On the other
hand, the WS protocol stack is designed specifically for exposing services on the

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:3

Internet, but lacks standardized and widely accepted means for managing sessions and
transactions which are the basis for charging and billing. Therefore, it is clear that SIP
and SOAP complement each other with their inherent functionalities. Furthermore,
since both protocols are already widely accepted and used, SIP and SOAP should be
integrated in a manner that requires little or no change to any existing communica-
tion nodes. For example, a SIP phone should be able to get data from an e-Health
Web Service that exposes a patient’s blood pressure to the doctor. Conversely, it should
be possible to receive SOAP messages from a SIP-based event notification system. To
meet this goal, in this article, we introduce a new intermediary node: a gateway that
transparently translates messages between SIP and SOAP protocols.

The core component of this gateway is a SIP/SOAP protocol conversion process. In
general, there are two basic steps in constructing a protocol conversion process. The
first step is deriving a set of mapping rules that represent the conversion process,
while the second step is implementing these mapping rules. However, as we show in
this article, due to fundamental differences between SIP and SOAP, it is not possible
to define a general set of mapping rules that could be used to integrate these protocols
for a large number of applications. For example, the mapping rules used to integrate a
SOAP-based chat bot service and a SIP instant messaging client differ from those used
to integrate a SIP phone and a sensor network exposed through SOAP. Beyond the ob-
vious syntactic differences, these mapping rules must properly maintain the semantics
of messages, and those semantics are inherently application specific. To address this
issue, the presented SIP/SOAP gateway is capable of executing various protocol con-
version processes implemented as plugins. In the scope of this article, a conversion
plugin is a computer process that defines message mapping rules for a specific set of
SIP and SOAP communication nodes. The aggregate functionality of all these nodes
and the conversion plugin governing their interaction is called a conversion application
or just application. To ease development of conversion plugins, we introduce an XML-
based language PCCL (Protocol Conversion and Coordination Language) [Budiselic
et al. 2007]. Such an approach enables mapping rules, described by PCCL, to be auto-
matically translated into an implementation of the conversion plugin. Writing a PCCL
definition is the only required step for adding an application to the gateway. PCCL
was designed to support rapid development based on message sequence diagrams of
application use cases.

The contribution of this article is a methodology for integrating SIP and SOAP pro-
tocols using application-specific converters. The presented methodology is founded on
three ideas. First, a considerable portion of SIP/SOAP integration, such as parsing and
composing messages as well as network and storage management, can be reused for all
applications. On the other hand, we argue that it is impossible to define general map-
ping rules for SIP and SOAP messages, so these mapping rules must be defined in an
application-specific manner. We describe a generic SIP/SOAP protocol conversion gate-
way that implements all the reusable functionality and relies on application-specific
conversion plugins to drive each individual application. Second, defining conversion
plugins should be done using a Domain-Specific Language (DSL) because developing
conversion plugins in general-purpose languages is tedious and requires a lot of boiler-
plate code distracting from the actual conversion specification. Towards this goal, we
describe PCCL, an XML-based language for defining application-specific rules for SIP/
SOAP integration. PCCL specifications are translated into application-specific conver-
sion plugins that are used by the generic SIP/SOAP gateway to run the application.
Third, the domain-specific language should closely model message sequence diagrams
of an application since its primary concern is message mapping. We designed PCCL
according to this idea and we present a method for writing PCCL definitions using
message sequence diagrams for the application’s use cases as design aids.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:4 G. Delac et al.

Fig. 1. E-Health SIP/SOAP integration use case.

The rest of the article is structured as follows. Section 2 presents a SIP/SOAP in-
tegration use case that is used in examples throughout the work. Section 3 is devoted
to fundamental theoretical background behind protocol conversion. Protocol projection
theory is used to demonstrate how protocol mismatches influence the potential for con-
structing a conversion process. In Section 4 we analyze protocol mismatches present
in integration of SIP and SOAP and present a set of requirements for PCCL and the
conversion gateway. The Protocol Conversion and Coordination Language is described
in Section 5. Section 6 presents a description of the generic SIP/SOAP gateway ar-
chitecture and explains how PCCL specifications get executed by the gateway. In
Section 7 we present how conversion applications can be defined in PCCL using
message sequence diagrams as design aids. In Section 8 we discuss the performance
characteristics of the presented methodology based on the results of experiments we
performed on the prototype implementation of the SIP/SOAP gateway. Section 9 sur-
veys related work in SIP/SOAP integration. Finally, concluding remarks and direc-
tions for further research are given in Section 10.

2. A SIP/SOAP INTEGRATION USE CASE

In this section we briefly describe an e-Health [Cubic et al. 2010] use case for SIP/
SOAP integration that we will reference in the remainder of the article. This example
uses the SIP extension for event notification [Roach 2002] to allow doctors to use a SIP
phone to access patients’ blood pressure and pulse that are exposed through a Web
service.

Figure 1 presents the high-level architecture of the example system. The e-Health
network monitors pulse and blood pressure of several patients and exposes its data
through a Web service. The premise of the use case is that the SIP phone does not
have the Web services protocol stack implemented and therefore cannot access the Web
service directly. Similarly, the Web service host does not have a SIP implementation
and therefore cannot be communicated with directly by SIP clients. To enable the SIP
phone to access sensor data through the Web service, the SIP/SOAP gateway is used
as a protocol converter between the SIP and SOAP domain.

The Web service exposes two methods. Both methods have a patientId parameter
used to identify a specific patient. The getData method is used for one-time data pull.
The method has no additional parameters and returns the patient’s pulse and blood
pressure values in an XML structure in the body of the SOAP response message. The
setSubscriptionStatus method has three additional parameters that specify the sub-
scription duration, value thresholds, and a Web service callback method and returns a
token identifying the subscription. If the pulse or blood pressure of the patient reaches
the specified threshold within the subscription duration, the Web service will notify the
subscribed client with the current data values and the subscription token via the Web
service callback method specified as an argument to setSubscriptionStatus.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:5

Fig. 2. Two ways of implementing a conversion mechanism for two processes using different protocols.

The SIP/SOAP gateway mirrors this SOAP interface to its SIP client. To request
one-time data retrieval, that is, an invocation of getData, the SIP client sends a SIP
SUBSCRIBE message with the Expires header set to the number one to the gateway.
Any other value of the Expires header is used as the subscription duration in minutes
for an invocation of setSubscriptionStatus. Further details about the use case are ex-
plained in the following sections when they are required to describe a feature of PCCL
or the SIP/SOAP gateway.

3. PROCESS INTEROPERABILITY

Process interoperability theory defines two processes that communicate by exchang-
ing messages as interoperable if they implement the same communication protocol
[Lam 1988]. This implies that each process is capable of understanding syntax and
semantics of messages it receives from the other process. To achieve interoperabil-
ity between two communicating parties that do not implement the same message ex-
change protocol, an additional conversion mechanism needs to be established. The
conversion mechanism can be implemented in two distinct ways as shown in Figure 2.
The first approach is to construct an additional layer atop the existing protocol stacks
which would facilitate the conversion, as shown in Figure 2(a). Processes A and B, that
implement protocol stacks P and Q, respectively, communicate by implementing addi-
tional layers LP and LQ . This approach requires that both communicating processes
be extended with additional functionality in order to become interoperable.

The alternative approach in building a converter is to implement the conversion
mechanism as a separate, third process. The converter then operates as a gateway
between processes by performing protocol conversion, as presented in Figure 2(b). Pro-
cesses A and B, that implement protocols P and Q, respectively, communicate by ex-
changing messages through the converter process G. The benefit of this approach is
that the existing systems do not need to be modified in order to become interoperable.
Furthermore, since the conversion logic is centralized, modifications to the conversion
process do not affect the communication endpoints. However, in contrast to the decen-
tralized approach presented in Figure 2(a), building a separate converter can induce
scalability issues, since it can become the system’s bottleneck. Furthermore, message
exchange with the converter process creates greater communication overhead than in
the decentralized approach.

Regardless of the implementation, the core purpose of the conversion process is to
translate between messages of various protocols. A conceptual overview of the con-
version process, common for both implementation approaches, is shown in Figure 3.
Each protocol is defined by its state space, message space and state transitions. The
state space is the set of all states that a process implementing a certain protocol can
transition to during its operation. The message set contains all the messages a process
can receive or send, while the state transitions define how the process changes states
depending on the received or sent messages. State transitions occur only when a mes-
sage is received or sent out. For example, processes A and B, presented in Figure 3,
implement message exchange protocols P and Q, respectively. Protocol P is defined by

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:6 G. Delac et al.

Fig. 3. Conceptual view of protocol conversion.

its state space SP and message sets MP and MP’. MP is the set of all possible incoming
messages, while MP’ is the set of all outgoing messages. Similarly, protocol Q is defined
by SQ , MQ and MQ ’. During its operation, process A receives messages from MP, in-
terprets them, changes states accordingly, and sends out response messages from MP’.
Similar actions during communication are performed by process B. To achieve interop-
erability of processes A and B, which do not implement the same protocol, a protocol
conversion process is used. The conversion process receives messages from sets MP’
and MQ ’, interprets and translates them to MQ and MP, respectively. Apart from
simply performing syntax changes, the converter needs to map messages from one set
to semantically equivalent messages in the other set. Mapping messages to their se-
mantic equivalents is the key issue of protocol conversion as many protocols greatly
vary in their purpose which dictates message semantics. For example, application-
layer protocols tend to have lower semantic equivalence since they are designed for
diverse applications like Internet Telephony, instant messaging, or text transfer. On
the other hand, data-layer protocols have a higher level of message equivalence, since
their common purpose is to transfer data regardless of data semantics.

Therefore, the key research goal in protocol conversion is to formally define whether
a useful protocol converter can be constructed for the given protocol pair. Although
this field has been a subject of intensive research in the last couple of decades, no gen-
eral solution methodology for protocol conversion is known. In Lam [1988], Calvert
and Lam [1989], Okumura [1986], and Tao et al. [1995], the authors propose formal
methods for protocol converter generation. These methods are used to generate con-
verters by combining protocol state machines, that is, by searching for state machine
intersections. The resulting conversion process is also described by a state machine
that contains an intersection of the protocols’ functionalities. However, successful gen-
eration of a converter depends on the aforementioned level of message equivalence,
that is, existence of protocol mismatches. In Calvert and Lam [1990], the authors de-
fine two types of protocol mismatches: hard and soft mismatches. For two protocols
that have hard mismatches, a general converter that retains any useful functionality
of the two protocols cannot be constructed. This means that processes that communi-
cate using these two protocols cannot exchange messages in a meaningful way since
one protocol lacks a crucial functionality of the other protocol. On the other hand,
soft mismatches allow the construction of a general protocol converter. However, such
a converter has only a subset of the functionality of both protocols. Despite this, for
some protocol conversion cases, such reduced functionality proves to be an adequate
solution.

In order to further describe how protocol mismatches affect protocol conversion,
we will refer to the theory of protocol projection [Lam 1988], usually used in protocol

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:7

Fig. 4. Construction of two common image protocols for P1 and P2.

verification. Protocol projection is based on aggregating the functionality of a protocol
in order to disregard behavior unimportant for proving a certain assertion. This is done
by partitioning the state space of a protocol. Each state partition is aggregated into a
single state in the projection. Similarly, the message set is partitioned into message
sets that cause state transitions in the projection. This process is referred to as protocol
aggregation. The newly created protocol with fewer states and messages is called an
image protocol. The image protocol represents behavior of the original protocol on a
higher level of abstraction, that is, some functionality is disregarded. Furthermore,
a key property of this approach is that if an assertion holds for the image protocol, it
also holds for the original protocol. Therefore, image protocols are more suitable for
verifying certain functionalities of a protocol.

The concept of an image protocol is applicable to the problem of protocol conversion,
where the goal is to find an image protocol common to both original protocols. Such
an image protocol would contain a subset of the original protocols’ functionalities. It
is possible for two protocols to have more than a single common image protocol, as
shown in Figure 4. State sets S1’ and S1” are constructed by aggregating states from
S1 in two different ways. Similarly, states from S2 of protocol P2 are aggregated to
form sets S2’ and S2”. The same aggregation rules hold for message sets M1 and M2.
If state space S1’ is equal to S2’ then a common image protocol CIP1 exists between P1
and P2. The same can be said for the common image protocol CIP2. When integrating
two protocols the goal is to find a common image protocol that retains as much of the
original functionality as possible.

To measure the difference between an image protocol and its original, a simple con-
cept of protocol resolution was introduced. The resolution is given by the size of mes-
sage and state sets of an image protocol. The grater the number of states and messages
defined by the protocol, the higher is its resolution. By definition, all image protocols
have a lower resolution than that of their originals. Thus, the goal of protocol con-
version is to find a common image protocol with the highest resolution. The maximum
resolution of a common image protocol varies for diverse protocol pairs as they differ in
the level of their semantic equivalence. The minimum resolution is constrained by the
requirements of the desired protocol converter. If this resolution cannot be achieved,
a hard mismatch exists between the two protocols for the given protocol integration
case. On the other hand, if the desired protocol converter can be defined by disre-
garding functionalities that caused the mismatch, a soft mismatch between the two
protocols exists.

When it is possible to find a common image protocol with a sufficiently high res-
olution and satisfactory functionality, that is, a soft mismatch exists, the solution to
protocol conversion is to build a memoryless converter. By implementing the common
image protocol, a memoryless conversion process translates messages of one proto-
col into semantically equivalent messages of the other protocol without performing

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:8 G. Delac et al.

any additional functionality. An example of a memoryless converter is the SIP-XMPP
gateway [Saint-Andre et al. 2007].

In case that protocol A does not have a desirable functional property of protocol B,
the common image protocol does not have sufficient functionality to describe a con-
version process between A and B, that is, a hard mismatch exists. In such cases, it
still may be possible to construct a converter by extending the conversion logic with
an additional state machine. However, such additional functionality cannot be derived
by applying the aforementioned formal conversion methods. Protocol converters with
extended functionality are referred to as finite-state converters. The built-in state
machine implements functionality which protocol A lacks and therefore enables the
conversion. For example, let the aforementioned protocol B require each message to be
marked with a sequence number. If protocol A does not support messages marked with
sequence numbers neither will any common image protocol of A and B. In that case,
to achieve the conversion, additional functionality is required in order to append se-
quence numbers to messages of protocol A. The characteristic property of finite-state
converters is that the set of messages sent by the converter has a higher resolution
than the message set received by the converter.

4. INTEGRATION OF SIP AND SOAP PROTOCOLS

In this section, we discuss key challenges in integrating SIP and SOAP and show that
a general protocol converter for all applications cannot be constructed because SIP and
SOAP have a hard mismatch and there is no general mapping of semantically equiva-
lent messages; instead, message mapping must be defined on a per-application basis.
We present a set of requirements for SIP/SOAP integration based on a domain-specific
language PCCL used to define application-specific message mapping and address the
SIP/SOAP hard mismatch. Additionally, we present requirements for a gateway that
performs protocol conversion between SIP and SOAP using plugins defined in PCCL.

4.1. Challenges in SIP/SOAP Integration

The integration of SIP and SOAP presents several challenges due to differences in the
intended purpose of the two protocols. One of the core issues in SIP/SOAP conversion
arises from the fact that SIP is a stateful protocol, while SOAP is stateless. Since
SIP is designed for session management, SIP nodes are required to store session data,
that is, state. The stored state usually includes authentication tokens and other ses-
sion parameters, like QoS (Quality of Service) settings. Since session data allows SIP
nodes to associate messages with corresponding sessions, it is essential for the nodes
to maintain session state. The following example illustrates how differences in state
management influence SIP/SOAP conversion.

In order to initiate a session, two SIP nodes must complete a three-way handshake
by exchanging a session identifier. The session is initiated by sending an INVITE mes-
sage (1) containing the session identifier, as shown in Figure 5(a). An OK message
(2) is sent in reply to the INVITE message, signalizing that the node is ready to ex-
change data in the proposed session. Finally, the session is established by an ACK
message (3). On the other hand, SOAP is a stateless protocol that conforms to SOA
principles [Huhns and Singh 2005]. Therefore, data is exchanged between the com-
municating parties in a simple request-response message exchange pattern, as shown
in Figure 5(b). This means that session initiation and termination messages cannot
be mapped to SOAP messages; neither can the session identifier be exchanged prior
to session establishment. Since a valid session identifier is a crucial parameter for
data exchange in sessions, SOAP lacks a desired logical property of SIP, thus a hard
mismatch exists for any given pair of SIP and SOAP nodes. In order to resolve this

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:9

Fig. 5. Resolving the hard mismatch of SIP and SOAP.

mismatch, a SIP/SOAP converter needs to handle session management on behalf of
the SOAP node; see Figure 5(c). This means that the converter is extended with an
additional functionality, not common for both protocols, that is, a finite-state converter
needs to be constructed.

Another conversion issue arises from the complexity of SIP and SOAP messages
and determining a semantically equivalent message in one protocol given a message
in the other. Since both SIP and SOAP are application-layer protocols, the syntax and
semantics of the message content vary depending on the application functionality. In
effect, the conversion middleware has to analyze the incoming message content and
use it to construct valid responses. This is a much more complex conversion problem
than for data-layer protocols since they only transfer data without analyzing it. This
data is not part of the conversion process and is processed by higher-level protocols.
SIP transfers plain unstructured text as payload, often embedded messages of other
textual protocols such as HTML, XMPP, or even SOAP. In addition, SIP messages
can be used to transfer various user-defined data structures stored as text. On the
other hand, SOAP messages are XML-based structured documents. The syntax and
semantics of SOAP messages depend on the functionality of the corresponding service.

Since the conversion process for SIP and SOAP must interpret the semantics of re-
ceived messages, and these semantics are application specific, semantically equivalent
SIP and SOAP messages cannot be defined for all applications and a general SIP/SOAP
converter is not possible. Therefore, the set of message mapping rules must be defined
specifically for any given SIP/SOAP conversion application.

4.2. Requirements for SIP/SOAP Integration

To address the challenges presented in the previous subsection, we designed PCCL.
PCCL is a domain-specific language for specifying session management and mes-
sage mapping rules for a SIP/SOAP application. The design of PCCL was guided by
the following requirements. First, to support coordination of an arbitrary number of
SIP and SOAP nodes, the DSL must allow the designer to specify URLs of all nodes

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:10 G. Delac et al.

Fig. 6. PCCL specification structure.

and other properties required to communicate with each node. In PCCL terminology,
SIP and SOAP communication nodes are called peers. Second, the DSL must provide
constructs for managing sessions between the peers. Primarily, it must be possible to
define session identifiers for both SIP and SOAP messages and store other session in-
formation required for a particular coordinated application. These session identifiers
are used to associate incoming SIP and SOAP messages with a session and the cor-
responding session data stored in the gateway. Third, since semantically equivalent
messages are determined by application specifics, the DSL must contain constructs for
specifying message mapping between the protocols.

To support execution of conversion applications defined in PCCL, the design of the
SIP/SOAP gateway was based on three key requirements. First, the gateway must be
able to parse and compose SIP and SOAP messages and manage network resources for
conversion applications. Specifically, the gateway must be able to receive and send SIP
and SOAP messages. Second, to support session management defined for a conversion
application in PCCL, the gateway must be able to store session data. Third, several
conversion applications must be able to run simultaneously through the same gateway.
Furthermore, it must be possible to add new PCCL definitions when a new conversion
application is to be run, or remove them when they are no longer necessary without
interrupting the system’s operation.

5. SIP/SOAP CONVERSION LANGUAGE

As a consequence of SIP and SOAP protocol mismatches described in the previous
section, and the fact that message mapping must be defined per application, conver-
sion plugins require substantial implementation effort in general-purpose languages.
To enable rapid development of conversion plugins we have designed an XML-based
domain-specific language [Mernik et al. 2005] called PCCL for Protocol Conversion
and Coordination Language. The conversion specification written in PCCL is auto-
matically translated into a conversion plugin implementation.

The structure of a PCCL specification is modeled after the requirements presented
in Section 4.2 and is shown in Figure 6. The coordinated peers element provides con-
structs for establishing logical identifiers for communication nodes that are integrated
in the application and defining their parameters. The session element is used to handle

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:11

Fig. 7. The coordinated peers PCCL element for the e-Health use case.

the hard mismatch of SIP and SOAP in session management. This element specifies
how session identifiers are created from message headers and content, and defines
variables for storing state. The message mapping specification is separated into two
sections: conditions and actions. The conditions element is used to control the flow
of the application based on the headers and content of incoming messages. The ac-
tions element specifies output messages and state changes that will be carried out in
response to the received message. The separation of conditions and actions simplifies
conversion specification through reusability of defined rules. All the elements of PCCL
are described in further detail in the following subsections. The semantics of PCCL
are defined leveraging examples from the SIP/SOAP integration use case described
in Section 2. A nearly complete listing of the PCCL specification of this use case is
discussed in Section 7 and can be used as further reference for the PCCL language.
Additional information on PCCL can be found in Budiselic et al. [2007].

5.1. Defining Coordinated Peers

PCCL provides constructs for integrating an arbitrary number of SIP and SOAP com-
munication nodes. All the nodes in the application are defined in the coordinated peers
section. Each node is assigned a logical identifier used to refer to it in the remainder
of the specification. Additionally, all required information for communicating with the
node is also listed in this section.

Every SIP node is defined by its FQDN or IP address and the port number. Since
interaction with a Web service is described in its WSDL document, the URL of the
Web service’s WSDL is defined for every SOAP node in the application. The gateway
retrieves the WSDL and uses it to create SOAP message templates. Additionally, the
URL used to send messages to the Web service is extracted from the WSDL document.
PCCL also provides means for restricting the interface of a Web service by specifying
only some of the exposed method names.

The coordinated peers element for the use case from Section 2 is shown in Figure 7.
In this use case there are only two communication nodes: a SIP phone and a Web
service exposing patients’ vital signs to doctors. The SIP node is described by a SIP
PCCL element. In this example, the SIP phone is assigned the logical identifier phone
through the name attribute of the SIP element. Furthermore, the address and port
elements define the address and SIP listening port of the SIP node.

On the other hand, the Web service is defined by a WS element. The URL of the
service’s WSDL is defined in the wsdl element. The invokes elements are used to de-
fine the method names of the service that will be invoked by the gateway during the
execution of the application. In this use case, both getData and setSubscriptionStatus
will be used so they are each defined by an invokes element.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:12 G. Delac et al.

Fig. 8. Session identifiers and variables for the e-Health use case.

5.2. Managing Session State

To resolve the hard mismatch between SIP and SOAP in regards to protocol-level ses-
sion management, session identifiers for SIP and SOAP are defined in PCCL on a
per-application basis. These session identifiers are used to correlate incoming mes-
sages to an existing session. In addition to session identifiers, the gateway can store
arbitrary data that has to persist throughout the session in session variables. The
PCCL session element is used to define both session identifiers and session variables.
Session variables are referenced in other parts of the PCCL specification where they
are set or read. The only difference between session identifiers and session variables
is that session identifiers are updated automatically by the gateway as new messages
are received, whereas session variables must be explicitly managed in other PCCL
elements.

The session element contains an attribute name that is used to define a session
namespace. Session identifiers are assigned to the namespace using the id PCCL ele-
ment. The name attribute of the id element defines the name of the identifier in the
namespace and the peer attribute refers to one of the logical identifiers defined in the
coordinated peers section. Session identifier values are extracted from received mes-
sages. The location attribute is used to specify the location of the identifier value in the
message. SOAP session identifiers also have a wsMethod attribute in the id element.
The identifier value is extracted from the response message received by the gateway
when it invokes the method specified by the wsMethod attribute. Session variables are
defined by var elements with a name attribute specifying the variable’s name in the
namespace. Both id and var elements have a type attribute that defines the type of the
identifier or variable and can be either string, integer, or float.

The SIP/SOAP integration use case described in Section 2 uses two session iden-
tifiers and several session variables, only two of which are shown in Figure 8 due to
space constraints. This use case uses only one namespace called session. The SIP call-
id header value is used as the SIP session identifier in the gateway. Since all SIP
messages contain this header value and it is unique within a session, it is sufficient to
correlate incoming SIP messages with the session.

However, as SOAP messages don’t contain session identifiers, the value chosen for
the SOAP session identifier depends on the specific application. In this SIP/SOAP
integration use case, a session identifier for SOAP messages is only required for the
callback from the Web service when a threshold is reached. All other SOAP messages
received by the gateway are SOAP responses that are easily correlated with the SOAP
request and therefore do not require a session identifier. Prior to receiving any such
callback, the gateway will have had to invoke the setSubscriptionStatus method of
the Web service. As described in Section 2, this method returns a subscription to-
ken, and this subscription token is then used in PCCL to define the SOAP session
identifier.

The variable patientId is used to store the patient identifier from the received SIP
request for the duration of the session. This stored value is then passed as an argu-
ment to the appropriate Web service method. The sequenceSection variable is used

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:13

Fig. 9. The matching rule for the one-time data pull SIP SUBSCRIBE message in the e-Health use case.

to guide the conversion process as a state machine, as described in Section 7. The
remaining session variables that are not shown here serve the same purpose as the
patientId variable for other parameters of the request, such as threshold values and
subscription duration.

5.3. Message Mapping

The message mapping section of a PCCL specification consists of a set of rules that
define how output messages are generated depending on input messages. Mapping
rules are divided into two sections: conditions and actions. Each message that satisfies
a set of conditions is said to match the specification. The matching process depends
on both the received message content and the current session state of the application
running through the gateway. A matching message is assigned a set of actions which
describe output messages that are to be sent out of the gateway and any session state
changes. This concept is further explained in the following subsections.

5.3.1. Conditions. Message matching rules are defined inside the conditions element
of the PCCL specification. The conditions element contains two protocol elements that
define all the matching rules for messages of that protocol. The protocol element’s
name parameter indicates whether the protocol is SIP or SOAP. A parameter is used
instead of element names to support extensibility of PCCL to other protocols. The
SIP protocol element contains one message element for each SIP communication node
and SIP method pair. Each message element has peer and type attributes that define
the communication node and method, respectively. Message elements contain if, elif,
and else elements used to control condition testing. These elements in turn contain
various condition testing elements like EQ (equals), GT (greater than), and LT (less
than). Condition testing elements have attributes left defining the left operand, of
the comparison, right defining the right operand, and type defining the type of the
operands. The left and right attributes can be data extracted from the message, session
data, or a constant. If the condition is met, the list of actions specified in the following
exec element will be carried out by the gateway.

A matching rule for the one-time data pull SIP SUBSCRIBE message is shown in
Figure 9. The EQ condition testing element compares the Expires header from the SIP
message with one. As explained in Section 2, an Expires header value of one indicates
that the client is requesting a one-time data pull from the Web service. Therefore, the
OneTimePull action will get executed. A more detailed listing of the same protocol
element is shown in Section 7.

The SOAP protocol element contains a message element for each method name, com-
munication node, and request/response triple. These parameters are specified through
the name, peer, and type attributes. Condition matching for SOAP messages is the
same as for SIP messages.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:14 G. Delac et al.

Fig. 10. The get element for extracting the patient’s identifier from a one-time data pull request.

Fig. 11. The set element used to update the session.sequenceSection variable.

5.3.2. Actions. PCCL actions are used to define output messages and session state
changes in response to a received message. Each action presents a set of activates
executed by the gateway after the message matching process is completed. Actions
can perform three basic activities: extracting and storing session data from input mes-
sages, changing session state, and defining output messages.

Every PCCL action is defined inside an action element. The action element has
name and inType attributes. The name attribute assigns a name to the action so that
it can be referred to in exec elements of message matching rules. The inType attribute
specifies the protocol of incoming messages that can cause this action to be executed
and can be either SIP or SOAP.

Extraction and storing of session data from the input message is specified using
get elements. Data is extracted from the location defined by the location attribute
which can be either header:header element or body. The extracted value can be further
specified using a small custom language. The general form of get element contents is

“left delim”{discard first n chars}$namespace.var${discard last n chars}“right delim”.

The first string that is exactly between the left and right delimiters at the specified
location in the message is further processed by discarding characters from the front
and the back and finally stored in the specified session variable. Any component except
the variable name can be left out. Delimiters default to matching anything and no
characters are discarded unless specified otherwise.

An example of a get element is shown in Figure 10. This get element extracts the pa-
tient’s identifier from a one-time data pull request. The request parameters are stored
in the first and only line of the body of the SIP message, and the patient’s identifier is
the last part of the line, preceded immediately by a question mark. The question mark
is used as the left delimiter and the newline character is discarded using the lan-
guage shown before. The extracted patient identifier is stored in the session.patientId
variable.

The PCCL set element is used to set the value of a session variable to a constant.
The name attribute defines the target variable, the type attribute defines the type of
the variable, and the value attribute contains the value to which the variable will be
set. This is primarily useful for controlling the value of a variable used to guide the
conversion process as a state machine.

Figure 11 shows the set element used to update the session.sequenceSection variable
after receiving the one-time data pull request. Since the gateway creates a SOAP
request and sends it to the Web service to get the requested data, the next expected
incoming message is the SOAP response from the Web service.

Finally, output messages are defined using send elements. Each action can create
multiple output messages. The protocol attribute specifies weather the output message
protocol is SIP or SOAP. SIP send elements have peer and type attributes that define
the destination SIP node and SIP method. PCCL provides constructs to manipulate
both header and body sections of the message. Header values are defined through
header elements with name and value attributes. The body of the SIP output message

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:15

Fig. 12. SOAP send element for relaying the client’s one-time pull data request to the Web service.

is defined by the body element. Both the body and header values can be constructed
from session variable values and constants.

For SOAP output messages, the send element has peer, name, and type attributes
that define the target Web service, invoked method name, and if the message is a
request or a response. Arguments are inserted into the message using the arg element.
Every arg element has name and type attributes. The argument value is specified
inside the arg element as a constant or the value of a session variable. The gateway
inserts the value into a message template generated from the service’s WSDL.

The send element that generates the SOAP getData request is shown in Figure 12.
Since the getData Web service method has only one parameter, only one arg element is
used in PCCL. The parameter’s name is patientId and the supplied value is the value
stored in the session variable session.patientId. In effect, session.patientId is used as a
temporary variable to copy the patient’s identifier from the SIP request into the SOAP
request message using a get and a send element.

Several complete action elements are shown in Figure 17 and are not repeated here
to save space.

PCCL is constrained in terms of computation capability. Specifically, arithmetic on
session variables isn’t supported. In terms of language theory, PCCL defines a finite-
state machine. Even though the message set size is unbounded and the session storage
of the gateway can be in an unbounded number of states, every plugin can only specify
a finite number of message matching rules. All internal states that don’t match any
specified condition are therefore equivalent to a dead state in the FSM. This design
choice was made for two primary reasons. First, in our experience with integrating
SIP and SOAP, arithmetic was never required; the conversion process typically ex-
tracts and copies message fragments, and PCCL can do that well. Second, this design
conforms to the idea of a finite-state converter discussed in the Introduction, that is
it is supported by theory. Furthermore, it is easy to generate fast code for such a
constrained converter.

6. ARCHITECTURE OF THE SIP/WS GATEWAY

To support execution of PCCL specifications and following the requirements presented
in Section 4.2, we designed a generic SIP/SOAP gateway architecture [Budiselic et al.
2010]. The generic gateway implements functionality common to all SIP/SOAP appli-
cations and uses conversion plugins for application-specific session management and
message mapping. An overview of the architecture is shown in Figure 13. The gateway
consists of five modules: the PCCL compiler, compiled plugin repository, active plugin
repository, SIP/SOAP message handling module, and the arbiter.

The PCCL compiler translates PCCL application specifications into compiled plug-
ins. Compiled plugins are executable versions of PCCL specifications. A PCCL spec-
ification is translated only once, when the application is first added to the gateway.
The compiled plugins of all the applications supported by the gateway are stored in
the compiled plugin repository. A compiled plugin is instantiated into an active plugin
when the gateway receives the first message of an application. All active plugins are
stored in the active plugin repository while the application is exchanging messages
through the gateway. The relationship between compiled and active plugins is similar

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:16 G. Delac et al.

Fig. 13. Architecture of the SIP/SOAP gateway.

to the relationship between a class and an object of that class in object-oriented pro-
gramming languages; the compiled plugin is a template for creating active plugins.
Once created, the active plugin accumulates session data in an application-specific
manner and determines the gateway’s response to received messages, as defined by
the original PCCL specification.

All message exchange with other communication nodes is done through the generic
SIP/SOAP message handling module. This module parses incoming SIP and SOAP
messages into internal message descriptors used by the gateway. Similarly, the mes-
sage handling module composes SIP and SOAP messages from outgoing message de-
scriptors generated in the gateway. Additionally, the module manages network con-
nections and therefore serves as an abstraction layer for SIP and SOAP interaction
with the outside world.

The arbiter is the control unit of the gateway. The main functions of the arbiter are
interacting with the message handling module and active plugins to process incoming
messages and management of active plugins as applications are started and finished.
The interaction of the arbiter with the message handling module and an active plugin
is shown in Figure 14. The arbiter exchanges message descriptors with the message
handling module through queues. For every received message (1), the message han-
dling module places one message descriptor into the queue. The arbiter removes the
descriptor from the queue (2) and attempts to find an active plugin that can process
the received message. For every active plugin from the active plugin repository, the
arbiter first tries to correlate the message with the session that the plugin is handling
(3). The session correlation process in the plugin is based on the session section of the
PCCL specification. The arbiter passes the session identifier extracted from the mes-
sage descriptor (4) along with the descriptor for condition matching in the plugin (5).
The first step of condition matching is to compare the session identifier with session
identifiers stored in the plugin if it is already defined. If these values do not match, the
message is not part of the session executing through that active plugin. Otherwise, the

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:17

Fig. 14. Interaction between the arbiter, the SIP/SOAP message handling module, and an active plugin.

full matching process described by the PCCL conditions element is performed on the
descriptor. Matching is successful if the session identifier matched the stored session
identifier and the message satisfies at least one condition. If matching was successful,
the list of actions generated by exec elements of the PCCL specification is returned to
the arbiter (6). Otherwise, the arbiter repeats steps (3) through (6) for the next ac-
tive plugin, until matching succeeds for one of them. If no active plugin matches the
received message, the arbiter searches for a compiled plugin that could process the
message as the first message of a new application. Compiled plugins are instantiated
one by one until a matching plugin is found. If no matching compiled plugin is found,
the message is discarded without effect.

For a successful match, the arbiter passes the action list and the session identifier
to the plugin (7). The plugin then executes the actions generating outgoing message
descriptors (8) and possibly changing its internal session identifiers and variables as
specified in the action elements of the PCCL specification. If the received message
ends the session and the application should be terminated, the plugin will include a
special DELETE action into the action list. If the DELETE action is present in the
action list, the arbiter removes the plugin from the active plugins repository after all
the other actions are executed by the plugin. Finally, the arbiter pushes the outgoing
messages to the outgoing message queue (9). Based on those descriptors, the message
handling module composes and sends out outgoing SIP and SOAP messages (10).

7. CREATING A PCCL SPECIFICATION FOR A SIP/SOAP APPLICATION

Defining a complex interaction between SIP and SOAP communication nodes can be
challenging even when using a DSL such as PCCL. A more methodical approach can
help in overcoming these challenges. The PCCL language was defined in a way to
support writing SIP/SOAP application specifications based on message sequence dia-
grams. In this section, we describe how to use message sequence diagrams to write a
PCCL specification for the SIP/SOAP integration example from Section 2.

As a starting point in writing a PCCL specification, every use case of the application
should be described by a message sequence diagram. The message sequence diagram
should specify the order of messages exchanged between the communication nodes and
the SIP/SOAP gateway and key parameters of all messages for that use case. The key
parameters specific for a message are header values that define a certain use case or
the expected contents of the message body. Additionally, for SIP, the key parameters
include the SIP request method (e.g., NOTIFY) or response code (e.g., 200 OK). For
SOAP messages, the SOAP method name, message type (request or response), and
argument names and values should all be indicated. Since message sequence diagrams
are just design aids in this approach, certain key parameters can be excluded if they
can be easily deduced from the context.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:18 G. Delac et al.

Fig. 15. One-time data pull message sequence diagram.

The application described in Section 2 has two use cases determined by the func-
tionality of the Web service exposing the patient’s vitals to doctors. The one-time data
pull use case is shown in Figure 15. A SIP SUBSCRIBE message (1) starts the session.
The Expires header set to one indicates to the gateway that the client is requesting a
one-time data pull. The gateway should respond with a SIP OK message (2) and in-
voke the e-Health Web service’s getData method (3). The Web service should respond
with the requested data and the gateway should send this data to the SIP client in
the body of a SIP NOTIFY message (4). The SIP client should indicate that the data
was received via a SIP OK message (5) after which the gateway should initiate session
termination with a SIP NOTIFY message (6). Finally, the client should reply with a
SIP OK message (7) to terminate the session on the gateway.

The event notification use case is modeled with the message sequence diagram
shown in Figure 16. The SIP phone specifies the subscription duration in the Expires
header of the initial SUBSCRIBE message (1). The SUBSCRIBE message also con-
tains desired threshold values for the patient’s vitals. The gateway then acknowledges
the request (2) and registers the subscription with the Web service (3). When invok-
ing the setSubscriptionStatus method, the gateway specifies to the Web service that
the callback method for event notification is called sendData. If subscription setup is
successful, the gateway notifies the SIP client (4) and expects a SIP OK message in
response (5). If any threshold value is reached for the duration of the subscription,
the Web service will invoke the sendData callback method (6) returning the current
vitals values in XML. The gateway then sends this XML description to the SIP client
(7) after which the SIP session is terminated (8–10).

Based on message sequence diagrams for all the use cases of an application, it is
straightforward to write conditions and actions elements of the PCCL specification for
the application. Since the SIP/SOAP gateway is driven by incoming messages, that
is, it performs actions exclusively as a response to a received message, the individual
message sequence diagrams should be partitioned into sections between these incom-
ing messages. All messages in each section will be outgoing messages from the gate-
way to one of the SIP or SOAP nodes. These outgoing messages should be constructed
and sent out by the gateway in response to the received message that starts a section.
There is a one-to-one correspondence between each section in a message sequence dia-
gram and an action element in the application’s PCCL specification. For each received

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:19

Fig. 16. Event notification message sequence diagram.

message, the middleware will determine which use case is currently active and which
action should be activated. Actions should update the session state of the active plugin
so that the next received message can be correctly processed.

Partitioning the message sequence diagram in Figure 15 yields four sections indi-
cated with a gray background. Section 1 contains messages (2) and (3), Section 2 con-
tains message (4), Section 3 contains message (6), and Section 4 is empty and starts
after message (7). These four sections are described in PCCL with the four action
elements shown in Figure 17.

Every action sends the messages in the corresponding sections and sets up the ses-
sion.sequenceSection variable for the next section. This variable is used in condition
elements to choose the appropriate action to activate as shown in Figure 18.

Every condition element tests if the application is in the state that expects this
message to advance its state. If the state matches the expected state for the re-
ceived message, the message is processed with the corresponding action element from
Figure 17.

Segmenting the message sequence for the event notification use case yields six sec-
tions shown in grey in Figure 16. Figure 19 shows the entire message PCCL element
for SIP SUBSCRIBE messages in the example application. The first if element han-
dles the start of the one-time data pull use case as described earlier. The second if ele-
ment handles the event notification use case. Any SUBSCRIBE message that doesn’t
satisfy either of these conditions will be reported as an error and ignored by the sys-
tem. The remainder of the PCCL specification for the example application is omitted
due to space constraints.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:20 G. Delac et al.

Fig. 17. Action PCCL elements for the four message sequence sections in Figure 15.

8. PERFORMANCE EVALUATION

The goal of this section is to asses the impact of the protocol conversion approach
proposed in this article on the performance of the conversion gateway. In order to focus
on the conversion process itself, we analyzed the performance of the arbiter module
defined in Section 6. The other components of the gateway, like SIP and SOAP parsers,
are inherent components to any system that converts between SIP and SOAP and were
therefore not analyzed.

In our experimental setup we deployed a prototype implementation of the SIP/SOAP
gateway on a dedicated workstation to minimize external effects on the measurements.
Apart from the gateway, the experimental setup consisted of a locally deployed SIP
client and a Web service deployed using the Apache CXF Framework [Apache 2012]. In
all the experiments, we used the SIP client to send a SIP INVITE message to the SIP/
SOAP gateway. To isolate the arbiter from the rest of the system, we made multiple
copies of the message descriptor generated by the SIP parser and the arbiter processed
them as if they were generated from separate messages.

For the test application, we used PCCL to define a simple plugin that extracts the
From header value from the SIP INVITE message, changes the state session vari-
able, and constructs a SOAP request. The plugin action definition also contained the
DELETE action so that the arbiter removes the plugin from the active plugins repos-
itory after a message is processed. Therefore, the active plugin repository was empty
before every message descriptor got processed and the state of the gateway was the
same for all messages. In every experiment, we measured the time interval from the
moment the arbiter takes the message descriptor from the incoming SIP queue to the
moment it puts the SOAP message descriptor in the outgoing SOAP queue.

As explained in Section 6, to process a received message, the arbiter first searches
for a plugin that can handle that message, that is, a matching plugin. In the first
experiment we explored the cost of this search process. To that end, we defined an
additional plugin that doesn’t match INVITE messages and used a varying number

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:21

Fig. 18. The conditions PCCL element describing action activation logic for each message sequence section
in Figure 15.

Fig. 19. The complete SIP SUBSCRIBE message PCCL element for the e-Health application.

of copies of that plugin alongside a single matching plugin. Since the setup of the
experiment ensures that there are no active plugins when a message is received, the
arbiter must sequentially search the compiled plugins repository to find the match-
ing plugin. On one extreme, the matching plugin might be the first one instantiated.
In that case, the message can be processed immediately and the search stops. This
situation corresponds to the best-case search performance. On the other extreme, the
matching plugin could be the last one instantiated which leads to worst-case search
performance.

The experimental results in Figure 20(a) show execution times for best- and worst-
case conversions performed by the arbiter for a single incoming message. The numbers
on the graph are averages over 1000 messages. We achieved the best-case performance
by placing the matching plugin for the incoming message at the front of the compiled
plugin list. Similarly, the worst-case performance was achieved by placing the match-
ing plugin at the end of the list. As could be expected, the results show a linear de-
pendency of the worst-case execution time and the number of compiled plugins. The

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:22 G. Delac et al.

Fig. 20. Conversion process evaluation.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:23

difference between the worst- and best-case performance is a result of the overhead
inherent to the conversion methodology which is based on polling all available plugins
until a matching plugin is found.

These results show that the order in which the plugins are instantiated and tested
for matching is significant because the plugin search process introduces a potentially
large delay in message processing. There are several approaches that could be applied
to make sure that the average performance is closer to the best case. If the probability
distribution for incoming messages is known ahead of time, the plugins could be stati-
cally arranged to achieve optimal average performance by placing plugins that process
more frequent messages near the front. Alternatively, the plugins could be rearranged
dynamically by the gateway so that most recently or most frequently used plugins get
placed at the front. A similar issue arises in organizing the active plugin repository.
Ultimately, the best strategy will depend on the characteristics of the use case.

In the second experiment, we measured how much time the arbiter takes to process
a batch of messages arriving in close succession. The results in Figure 20(b) show a
linear increase of total processing time with the increase of the number of messages.
The three lines show the performance given 250, 500, and 750 compiled plugins in the
gateway, and all measurements were done for the worst-case plugin search time, that
is, when the single matching plugin was at the end of the plugin list. The results indi-
cate that the processing time per message remains stable as the number of messages
increases. The slope of the graph increases with the number of plugins due to plugin
search overhead.

In the third experiment, we measured the message conversion rate of the arbiter in
relation to the number of compiled plugins. The experiment was carried out using 1000
identical message descriptors for each plugin count and measuring the time required
for their conversion. As in the previous experiment, measurements were performed for
the worst-case plugin search performance. The results presented in Figure 20(c) show
that the message conversion rate is inversely proportional to the number of compiled
plugins.

9. RELATED WORK

Complementing features of SIP and SOAP are recognized by academia and the in-
dustry, resulting in many research efforts focused on integrating these protocols. The
common goal for most research in this area is a superset of both protocols, a solution
or a new standard that uses Web services for creating platform-independent services
and semantically proper data exchange among them, and uses SIP for establishing
and maintaining sessions among such services.

Most existing solutions propose modifications to communication nodes’ protocol
stacks by adding a SIP or SOAP protocol layer. In Liu et al. [2004] the authors con-
sider the problem of session state management in integrating SIP and SOAP. They
propose to insert session data into SOAP message envelopes. However, the proposed
intervention requires modification of existing Web services and thus differs from our
approach.

Research presented in Dong and Newmarch [2010] also relies on using both a SIP
stack and a Web services stack in all communication nodes. The presented approach
is to first use SIP for establishing a session, and afterwards utilize the obtained ses-
sion identifier in SOAP messages. Such an approach can provide guidance for future
services that utilize both SIP and SOAP protocol stacks in all communication nodes.
However, it does not propose a solution for general integration with existing SOAP-
based services and requires changes to nodes’ protocol stacks.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:24 G. Delac et al.

A similar approach is used in the Akogrimo project [Jähnert et al. 2007, 2010]
where SIP and the existing IMS architecture of telecommunication networks is used
for establishing and maintaining sessions among Web services that communicate with
SOAP messages. Additionally, authors describe a prototype that utilizes Web service
to mimic formalisms of IMS nodes in order to interact with modern telecommunica-
tion networks. While this work clearly shows a possible evolution of both Web services
and the IMS architecture, it doesn’t explain how to enable direct communication and
interaction of SOAP and SIP nodes in general.

Another similar approach is described in Lakas et al. [2007]. The goal of this re-
search is bridging the gap between the Web services on the Internet and the Public
Switched Telephone Network (PSTN) for typical telecommunications networks’ ser-
vices like voice, voicemail, and location services. SOAP is used to carry SIP messages
in its headers and a specially designed SIP/PSTN gateway is used for transmitting SIP
messages to SIP User Agents that don’t support Web services in their protocol stacks.
Like the previously mentioned solutions, this approach also doesn’t propose means for
interaction among SIP and SOAP nodes in general.

A somewhat different approach is used in the IMS Enterprise Suite SOAP Gate-
way [IBM 2010; Wicks et al. 2009] that allows reuse of IMS applications as Web ser-
vices. The gateway translates incoming SOAP messages and relays them to IMS SIP
applications. The mapping between clients external to the IMS network, that com-
municate with the IMS network through Web services, and servers, which are IMS
applications, is done through automatically generated mapping files. Mapping files
are generated for each Web service interface that exposes some IMS application func-
tionality to external networks. Compared to the solution presented in this article,
this gateway doesn’t provide bidirectional conversion functionality, as it is not possible
to define mapping between SIP clients and Web-service-based servers. Additionally,
mapping files contain only simple, stateless session information. Thus, more complex
interaction between SOAP clients and SIP servers isn’t feasible.

Similarly, Avaya products [Avaya 2010] (Avaya SOA, Avaya SIP Application Server,
Avaya Communication Process Manager) provide means to access telecommunication
infrastructure through Web services. The proposed solution implements a set of ser-
vices that can access SIP-based nodes. The Avaya service set is also exposed as Web
services, therefore effectively allowing SOAP messages to reach a SIP network. Al-
though allowing the communication nodes to remain unchanged, this approach does
not provide a general solution for SIP/SOAP conversion due to predefined and limited
conversion functionality.

Another similar commercial solution is presented in Maes [2009]. The solution is
based on a gateway comprised of several Oracle products that provide seamless instant
messaging between various kinds of end-user clients, including SOAP-based and SIP-
based clients. However, it must be noted that instant messaging itself has simple,
unidirectional transactions. Thus, the presented solution doesn’t provide means for
complex bidirectional transactions that are commonly required. Also, since instant
messaging is not stateful, the solution doesn’t address the issue of WS statelessness.

The problem of stateful, complex bidirectional transactions among SIP-based and
SOAP-based nodes is identified in Levenshteyn and Fikouras [2006]. The authors
clearly identify the issues of WS statelessness and utilize additionally proposed Web
services standards, like the already mentioned WS-CAF [OASIS 2011], for adding
state to Web services. Additionally, the authors acknowledge the issue of session map-
ping between SIP and SOAP. However, no concrete solution is presented for this issue,
only a guideline for utilizing the Session Description Protocol (SDP) as a carrier of
Web services session information towards SIP nodes, and WS-CAF as a carrier of SIP
session information towards Web services.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:25

Another approach to solving the problem of stateful bidirectional transactions
among SIP-based and SOAP-based nodes uses Business Process Execution Language
(BPEL) [OASIS 2007] or Enterprise Service Bus (ESB) products (e.g., OpenESB [Xerox
2009], Oracle Service Bus [Oracle 2008], MicrosoftBizTalk [Microsoft 2010]). Both
BPEL and ESB are examples of the general-purpose programming-in-the-large con-
cept [DeRemer and Kron 1976] for conducting Enterprise Application Integration
(EAI). By using the mediation EAI pattern, brokering between different heterogeneous
applications and protocol scan can be established. For example, mediation between
SIP-based and SOAP-based nodes can be achieved by creating BPEL or ESB work-
flows that utilize advanced language mechanisms (like BPEL correlation sets) or in-
line code snippets (e.g., Java for OpenESB, Oracle Service Bus, and Oracle Mediator;
C# for Microsoft BizTalk) for managing state between SIP and SOAP. However, such
an approach is heavyweight in comparison to the one presented in this article. First,
it requires design and implementation of protocol-level statefulness that isn’t inher-
ently supported by BPEL or ESB. For instance, an example of such statefulness issue
is the necessity to handle SIP session ID. On the other hand, PCCL solves this issue
automatically, with minimal setup. Second, business- or application-level statefulness
must be implemented in BPEL correlation sets or ESB inline code snippets. For gen-
eral message coordination scenarios, both of these require general-purpose program-
ming in languages like Java or C#. PCCL, on the other hand, has explicit language
constructs for coordinating and converting SIP and SOAP semantics. Thus, it can be
concluded that BPEL and ESB approaches require more knowledge on the behalf of
implementers. While basic knowledge of SIP and SOAP is certainly required to create
a coordinated application with SIP and SOAP nodes, PCCL eliminates much of the
complexity inherent to this process. On the other hand, BPEL and ESB approaches
are designed for the broader EAI scope and therefore don’t focus on the specifics of
SIP/SOAP integration. Using PCCL, implementers can focus on application-specific
semantics of SIP and SOAP messages that will be exchanged through the gateway
and express the conversion process in PCCL itself, without relying on general-purpose
programming.

In Kongdenfha et al. [2009] the authors present a generic framework based on pro-
tocol mismatch patterns that can be used to construct an adapter (converter) for het-
erogeneous service-oriented architectures. The authors present a taxonomy of common
protocol mismatch patterns. The patterns need to be instantiated by the converter de-
velopers in order to resolve mismatches for a given pair of services. More specifically,
a combination of BPEL [OASIS 2007] and a domain-specific query language is used to
define the conversion rules. Although the presented approach has similarities with the
conversion method proposed in our article, some significant differences exist. In our
article we clearly state and address the mismatches specific to SIP/SOAP conversion.
We acknowledge that the presented requirements could be used to define mismatch
patterns as suggested by the authors. However, the authors limit their discussion on
service integration to the business process level, that is, they observe a protocol as
a sequence of message exchanges between clients and services. Thus, proposed mis-
match patterns are complemented with business logic to facilitate a specific conver-
sion scenario. We believe that protocol mismatches should be analysed for a variety of
application-layer protocols that are not necessarily compliant with service composition
engines. Following this approach, more comprehensive mismatch patterns could be de-
veloped. Furthermore, the authors propose an implementation based on extending a
BPEL execution engine. Thus, the conversion rules can be linked to specific events in
the BPEL workflow which define service interactions. Although this approach is valid,
we suggest that protocol conversion should be more clearly separated from a specific
workflow execution engine. Thus, the converter events should be limited to message

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:26 G. Delac et al.

reception/sending. In such a way it is possible to construct a conversion gateway that
can be utilized by various business process execution engines.

10. CONCLUSION AND FUTURE WORK

In this article we explore the possibilities of designing a general-purpose converter to
integrate SIP and SOAP services. As most other application-layer protocols, SIP and
SOAP have pronounced semantic differences that lead to hard protocol mismatches.
For example, SIP is oriented around messages exchanged in the context of a session
while SOAP is a request-response protocol with no support for sessions. Additionally,
it is, in general, not possible to define semantically equivalent SIP and SOAP mes-
sages since message semantics on the application layer depend on the application. For
example, the same responses from a weather forecast Web service might need to be
mapped to completely different SIP messages for SIP nodes expecting the data to be
formatted in a specific way.

Through an analysis of SIP and SOAP and predefined business goals, we defined
a methodology for integrating SIP and SOAP protocols. The methodology is based on
three key ideas. First, SIP and SOAP integration should be done through a generic
SIP/SOAP gateway. This gateway can implement SIP and SOAP message handling
and facilities for storing session data, while using application-specific conversion plug-
ins for message mapping and session management rules. We describe the architecture
of a generic SIP/SOAP gateway that has been implemented and used in practice.

Second, message mapping and session management rules should be specified in a
domain-specific language since defining complex interactions between SIP and SOAP
nodes in a general-purpose language quickly becomes impractical. We describe the
Protocol Conversion and Coordination Language that is an XML-based language that
supports bidirectional conversion of SIP and SOAP messages and coordination of an
arbitrary number of SIP and SOAP communication nodes in a SIP/SOAP application.
PCCL isolates users of the SIP/SOAP gateway from the many intricacies of SIP and
SOAP protocols and allows them to focus on the interaction logic required for their
application. Conversely, PCCL is also isolated from the architecture of the gateway.
This fact makes it possible to change the architecture of the gateway, for example,
from a centralized to a distributed system, without changing PCCL specifications of
previously defined applications.

Third, the domain-specific language should provide constructs for modeling message
sequence diagrams of an application because its central purpose is to define message
mapping which is exactly specified in message sequence diagrams. We show how to
specify an e-Health SIP/SOAP application in PCCL based on message sequence dia-
grams and provide a nearly complete PCCL specification.

The presented research offers several paths for further research. As noted in Sec-
tion 3, a dedicated intermediary node such as the SIP/SOAP gateway can become
a bottleneck and a single point of failure in a system. The presented gateway was
implemented as a centralized system running on a single-server machine. However,
the presented architecture does not limit the implementation to such a configuration.
Since the modules in the gateway are loosely coupled and communicate through well-
defined interfaces, it should be possible to distribute the gateway to several machines
with small modifications like replacing in-memory message queues with mailboxes
that can be accessed through the network.

Through performance analysis of the arbiter module, we’ve shown the significance
of the order of conversion plugins in the plugin repository. Some approaches for ad-
dressing this issue are suggested in Section 8, and could be explored further.

Using a more formal model of message sequence diagrams, it should be possible
to create an even simpler domain-specific language for defining message mapping

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

A Methodology for SIP and SOAP Integration Using Protocol Conversion 15:27

between SIP and SOAP nodes. This new language could be translated to PCCL or
even directly to executable conversion plugins.

Finally, the methodology presented in this article for integrating SIP and SOAP
can be applied to other protocols that have hard mismatches and do not present a
meaningful general mapping between semantically equivalent messages.

ACKNOWLEDGMENTS

The authors thank Ivan Benc from Ericsson Nikola Tesla d.d., Sinisa Srbljic, Dejan Skvorc, Miroslav Popovic,
Klemo Vladimir, Marin Silic and Zvonimir Pavlic from the University of Zagreb, Faculty of Electrical Engi-
neering and Computing, Jakov Krolo from Corvus Info d.o.o., Croatia and Daniel Skrobo from Asseco SEE,
Croatia.

REFERENCES
APACHE. 2012. Apache cxf: An open-source services framework. http://cxf.apache.org/.
AVAYA. 2010. Avaya products. http://www.avaya.com.
BUDISELIC, I., DELAC, G., SEGO, D., AND STEFANEC, T. 2007. SIP/WS interworking triggering gateway.

In Proceedings of the Ericsson Nikola Tesla Summer Camp: New Generation Network Applications and
Protocols. 270–311.

BUDISELIC, I., ZUZAK, I., AND BENC, I. 2010. Application middleware for convergence of ip multimedia
system and web services. In Proceedings of the 33rd International MIPRO Convention. 507–512.

CALVERT, K. AND LAM, S. 1990. Formal methods for protocol conversion. IEEE J. Select. Areas Comm. 8, 1,
127–142.

CALVERT, K. L. AND LAM, S. S. 1989. Deriving a protocol converter: A top-down method. In Proceedings
of the Symposium on Communications Architectures and Protocols (SIGCOMM’89). ACM Press, New
York, 247–258.

CUBIC, I., MARKOTA, I., AND BENC, I. 2010. Application of session initiation protocol in mobile health
systems. In Proceedings of the 33rd International MIPRO Convention. 367–371.

CURBERA, F., DUFTLER, M., KHALAF, R., NAGY, W., MUKHI, N., AND WEERAWARANA, S. 2002. Unraveling
the web services web: An introduction to soap, wsdl, and uddi. IEEE Internet Comput. 6, 86–93.

DAY, M., AGGARWAL, S., MOHR, G., AND VINCENT, J. 2000. Instant messaging/presence protocol require-
ments. RFC 2779, Network Working Group, Internet Engineering Task Force.

DEREMER, F. AND KRON, H. 1976. Programming-in-the-large versus programming-in-the-small. IEEE
Trans. Softw. Engin. SE-2, 2, 80–86.

DONG, W. AND NEWMARCH, J. 2010. Adding Session and Transaction Management to Web Services by
Using SIP. Lap Lambert Academic Publishing.

DOUBANGO. 2012. Simpl5: The world’s first html5 sip client. http://code.google.com/p/sipml5/.
IBM. 2010. IBM ims soap gateway.

http://www-01.ibm.com/software/data/ims/soa-enterprise-suite/soap/.
HO, J.-M., HU, J.-C., AND STEENKISTE, P. 2001. A conference gateway supporting interoperability between

sip and h.323. In Proceedings of the 9th ACM International Conference on Multimedia (Multimedia’01).
ACM Press, New York, 421–430.

HUHNS, M. N. AND SINGH, M. P. 2005. Service-Oriented computing: Key concepts and principles. IEEE
Internet Comput. 9, 75–81.

JÄHNERT, J., CUEVAS, A., MORENO, J. I., VILLAGRA, V. A., WESNER, S., OLMEDO, V., AND EINSIEDLER,
H. 2007. The “akogrimo” way towards an extended ims architecture. In Proceedings of the 11th Interna-
tional Conference on Intelligence in Networks (ICIN’07).

JÄHNERT, J., MANDIC, P., CUEVAS, A., WESNER, S., MORENO, J. I., VILLAGRA, V., OLMEDO, V., AND
STILLER, B. 2010. A prototype and demonstrator of Akogrimo’s architecture: An approach of merging
grids, soa, and the mobile Internet. Comput. Comm. 33, 1304–1317.

KAVANTZAS, N., BURDETT, D., RITZINGER, G., FLETCHER, T., LAFON, Y., AND BARRETO, C. 2005. Web
services choreography description language, version 1.0. W3C Candidate Recommendation.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109.

KONGDENFHA, W., MOTAHARI-NEZHAD, H. R., BENATALLAH, B., CASATI, F., AND SAINT-PAUL, R. 2009.
Mismatch patterns and adaptation aspects: A foundation for rapid development of web service adapters.
IEEE Trans. Services Comput. 2, 94–107.

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

15:28 G. Delac et al.

LAKAS, A., SERHANI, M., BOULMALF, M., AND BADIDI, E. 2007. A framework for integrating sip-based
communication services and web services. In Proceedings of the IADIS International Conference on
Telecommunications, Networks and Systems.

LAM, S. S. 1988. Protocol conversion. IEEE Trans. Softw. Engin. 14, 353–362.
LEVENSHTEYN, R. AND FIKOURAS, I. 2006. Mobile services interworking for ims and xml web services.

IEEE Comm. Mag. 44, 9, 80–87.
LIU, F., CHOU, W., LI, L., AND LI, J. 2004. WSIP: Web service sip endpoint for converged multime-

dia/multimodal communication over ip. In Proceedings of the IEEE International Conference on Web
Services (ICWS’04). IEEE Computer Society, 690–697.

MAES, S. 2009. Intelligent message processing: Patent. U.S. Patent Application Publication, pub no.
US2009/0125595 A1 (pub date 5/14/09).

MERNIK, M., HEERING, J., AND SLOANE, A. M. 2005. When and how to develop domain-specific languages.
ACM Comput. Surv. 37, 316–344.

MICROSOFT. 2010. Microsoft biztalk server. http://www.microsoft.com/biztalk/.
OASIS. 2007. Web services business process execution language (wsbpel).

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
OASIS. 2011. Web services composite application framework (ws-caf).

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf.
OKUMURA, K. 1986. A formal protocol conversion method. In Proceedings of the ACM SIGCOMM Conference

on Communications Architectures and Protocols (SIGCOMM’86). ACM Press, New York, 30–37.
ORACLE. 2008. Oracle service bus.

http://www.oracle.com/technetwork/middleware/service-bus/overview/index.html/.
ROACH, A. 2002. SIP-Specific event notification. RFC 3265, Network Working Group, Internet Engineering

Task Force.
ROSENBERG, J., SCHULZRINNE, H., ET AL. 2002. SIP: Session initiation protocol. RFC 3261, Network Work-

ing Group, Internet Engineering Task Force.
ROSENBERG, J. D. AND SHOCKEY, R. 2000. SIP: A key component for internet telephony. Comput. Teleph.

8, 124–139.
SAINT-ANDRE, P., HOURI, A., AND HILDEBRAND, J. 2007. Interoperability between the extensible mes-

saging and presence protocol (xmpp) and sip for instant messaging and presence leveraging extensions
(simple). Internet-Draft draft-ietf-autoconf-manetarch-07, Internet Engineering Task Force.

TAO, Z. P., BOCHMANN, G., AND DSSOULI, R. 1995. An efficient method for protocol conversion. In Pro-
ceedings of the 4th International Conference on Computer Communications and Networks (ICCCN’95).
IEEE Computer Society, 40–47.

W3C. 2007a. SOAP version 1.2 part 0: Primer (second edition). http://www.w3.org/TR/soap12-part0/.
W3C. 2007b. Web services description language (wsdl) version 2.0 part 1: Core language. W3C Recommen-

dation. http://www.w3.org/TR/2007/REC-wsdl20-20070626.
WICKS, G., AERSCHOT, E. V., BADREDDIN, O., ET AL. 2009. Powering SOA Solutions With IMS.

Vervante.
XEROX. 2009. The open enterprise service bus. http://openesb-dev.org/.

Received August 2011; revised June 2012; accepted August 2012

ACM Transactions on the Web, Vol. 6, No. 4, Article 15, Publication date: November 2012.

