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Abstract 

 
Service-Oriented Programming Model is a new 

methodology for building service-oriented applications. 
In the Service-Oriented Programming Model, an 
application is assembled from loosely coupled, 
dynamically bounded services that mutually cooperate 
and compete in order to achieve the application’s goal. 

 In this paper, we present our experiences with the 
Service-Oriented Programming Model attained through 
development and testing of Access Control System. The 
Access Control System is a service-oriented application 
that manages security in the virtual organizations. We 
indicate how Service-Oriented Programming Model 
facilitates run-time reconfiguration of the Access Control 
System. Further, we evaluate and compare the 
performance of several architectures of the Access 
Control System with different levels of parallelism and 
concurrency.  

 

1. Introduction 
Service-oriented computing [1] has recently emerged 

as a new paradigm for creating distributed applications. 
The service-oriented computing creates applications 
using the service-oriented architecture [2], an 
architectural style that builds applications from loosely 
coupled, dynamically bounded services. The service-
oriented architecture introduces a new level of flexibility 
because it uses services as implementation independent 
software components that can be dynamically discovered, 
composed and orchestrated into new services or 
applications. 

Service-Oriented Programming Model (SOPM) [8] is 
a new methodology for the design, development, and 
execution of service-oriented applications. The SOPM 
utilizes Coopetition Based Distributed Architecture. In 
the Coopetition Based Distributed Architecture, 
application services mutually cooperate and compete 
without central control authority in order to reach the 
global goals of the application. The Programmable 

Internet Environment1 (PIE) [9] is an environment that 
implements the SOPM and enables development and 
execution of SOPM-based applications over Internet 
infrastructure. 

In this paper, we present the application of the SOPM 
in a service-oriented Access Control System [7]. Our goal 
while building the Access Control System is to explore 
the potentials of the run-time reconfiguration of the 
SOPM-based applications. Particularly, we investigate 
how various application architectures with different 
levels of parallelism and concurrency influence the 
overall performance of the SOPM-based application.  

The remainder of the paper is organized as follows. 
Service-Oriented Programming Model is described in 
section II. Section III presents the Access Control System 
built using SOPM. Section IV gives a performance 
analysis of the Access Control System, while section V 
gives a conclusion. 

2. Service Oriented Programming Model 
 The Service-Oriented Programming Model (SOPM) 

is a new methodology for building service-oriented 
applications. The SOPM is based on the following 
principles: Coopetition Based Distributed Architecture, 
End-user development framework and Distributed 
translation process.  

In the Coopetition Based Distributed Architecture 
(CBDA) applications are composed of services that 
perform local actions without central control authority. 
The term coopetition designates that the services 
simultaneously cooperate and compete while executing 
application goals. Figure 1 presents an application based 
on the CBDA. The application consists of Application 

                                                        
1 The Service-Oriented Programming Model, Coopetition Based 

Distributed Architecture, Access Control System, and Programmable 
Internet Environment are developed at the School of Electrical 
Engineering and Computing at the University of Zagreb, Croatia, in 
cooperation with Ericsson Nikola Tesla d.d., Zagreb, Croatia, and 
cosponsored by Ministry of Science, Education, and Sports through the 
national Cro-Grid project. More information is available at: 
http://www.ris.fer.hr, http://www.pie.fer.hr and http://www.cro-grid.hr. 



services, Coopetition services and Distributed programs.  
The Application services implement coarse fragments 

of application’s computational logic. These services are 
delivered on-demand through globally accessible 
network. Alternatively, Application services can be 
custom developed in order to provide specific 
functionalities. Coopetition services [3] are pre-built 
services of the SOPM environment that are used for 
coordination and synchronization of the Application 
services. These services are Semaphore, MailBox, and 
EventChannel. For instance, MailBox supports the 
persistent asynchronous communication between services 
using message-oriented communication model. 
Distributed programs [4] handle cooperation and 
competition between Application services. They use 
Coopetition services in order to bind and synchronize 
Application services into a distributed application. 
Distributed programs are specified in a process 
description language CL (Coopetition Language) [5], 
which consists of the subset of BPEL4WS [11] and 
WSDL languages [12]. 

The End-User development framework is a paradigm 
that simplifies development process of distributed 
applications founded on Coopetition Based Distributed 
Architecture. The End-User development framework is 
based on the Simple Services Composition Language 
(SSCL) [13], a service composition language targeted at 
end-users. The end-users use SSCL to build Distributed 
programs. The Distributed translation process transforms 
Distributed programs written in SSCL into programs 
written in CL. Further, is sets-up the CL programs for 
execution on the computers in the SOPM environment.  

The Programmable Internet Environment (PIE) [9] is 
environment that implements SOPM. PIE supports 
development and execution of SOPM-based applications 
over Internet infrastructure. Specifically, PIE implements 
the coopetition services, the interpreter for the CL 
distributed programs, and the translation process for 
distributed programs written in the SSCL. In addition, 
PIE offers management and deployment tools [5] for 
application and coopetition services and the management 

tool for the SSCL translation process. Furthermore, PIE 
creates a virtual network of service providers. 
Applications written for the PIE utilize application 
services from the virtual network and services publicly 
available on the Internet. 

3. Access Control System 
The Access Control System is a part of the 

infrastructure supporting virtual organizations. A Virtual 
organization [10] is a group of users and services that 
form a community in which services are used in a secure, 
reliable and accountable manner. The Access Control 
System operates as organization’s controlling authority 
that authenticates members of the virtual organization, 
and secures and authorizes access to the services in the 
organization. 

Figure 2 presents the overall organization of the 
distributed Access Control System. The system consists 
of four subsystems: Security Gateway, Security Services, 
Distributed Document Storage, and System Controller. 

Distributed Document Storage (DDS) is a scalable, 
fault-tolerant, service-oriented storage system designed 
for storage of XML documents. Other subsystems of the 
distributed Access Control System use the DDS to store 
and fetch XML documents required in the operation of 
the virtual organization. The Security Services subsystem 
executes registration and authentication services of the 
virtual organization. These services enable users and 
other services to join and authenticate with the 
organization. The Security Gateway acts as a policy 
enforcement point that controls the access to the services 
exposed in the virtual organization. All service calls in 
the virtual organization are tunneled through the Security 
Gateway, which authorizes access to the services. The 
System Controller is an administrative subsystem that 
deploys, configures, and reconfigures distributed Access 
Control System over a set of available computers. 

3.1. Distributed Document Storage 
 Figure 3 presents the structure of the Distributed 

Document Storage (DDS). The Distributed Document 
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Storage consists of Document Store services and DDS 
Distributed programs. Document Store services store and 
fetch XML documents from their local storage. DDS 
Distributed programs coordinate the work of the 
Document Store services.  

DDS Distributed programs implement the 
coordination logic of the DDS. The coordination logic is 
based on a mapping table encoded into the bodies of 
distributed programs. Each time a DDS Distributed 
program receives a document request, it uses the encoded 
mapping table to map the request to the Document Store 
service that stores a copy of the requested document. 
Distributed program forwards the request to the selected 
Document Store service, receives the response, and 
forwards the response to the requestor. The DDS 
maintains the consistency of the copies of documents by 
synchronizing document modifications using the 
two-phase commit protocol. 

The structure of the Distributed Document Storage is 
reconfigurable. Access Control System administrators 
can modify the number of Document Store services, 
mapping of the documents to the Document Store 
services and the number of DDS Distributed programs.  

3.2. Security Services 
Figure 4 presents the structure of the Security Services 

subsystem. The subsystem consists of a set of MailBoxes,  
RegAuth services and SS Distributed programs. MailBox 
services are Coopetition services of the SOPM 
environment. Each MailBox serves as a queue of requests 
that are pending for processing. The RegAuth services are 
SOPM Application services that implement the actual 
request processing logic. Each RegAuth service 
implements the logic for processing both the registration 
and authentication requests. The SS Distributed programs 
are SOPM Distributed programs that obtain requests from 
MailBoxes and forward them to RegAuth services. Each 
SS Distributed program is defined by three parameters: 
the Mailbox it uses to obtain the requests, the set of 

RegAuth services it forwards the requests to, and the 
number of instances it runs concurrently. Number of 
instances of the SS Distributed program defines the 
number of requests it obtains and processes concurrently. 

Members of the virtual organization put registration 
and authentication requests into MailBoxes through the 
Security Gateway subsystem. The Security Gateway 
forwards each request to one of the MailBoxes. One 
instance of a SS Distributed program obtains the pending 
request from the MailBox and forwards it to one of the 
RegAuth services. The RegAuth service decrypts, 
verifies, and processes the request. During processing, 
the RegAuth service fetches, stores, deletes and updates 
documents in the DDS. The SS Distributed program 
receives the response from the RegAuth service and 
forwards it to the user through the Security Gateway. 

The structure of the Security Services subsystem is 
configurable. Administrators can modify the number and 
placement of MailBoxes, RegAuth services, and SS 
Distributed programs. Furthermore, they can modify the 
parameters of the SS Distributed programs. 

3.3. Security Gateway 
The Security Gateway subsystem consists of several 

Access services. Each Access service operates as an 
independent security-gateway that receives and forwards 
service requests according to the security policies and 
credentials of the virtual organization. The Access 
services fetch the security policies and credentials from 
the DDS. Since Access services execute mutually 
independently, there is no coordination logic in the 
Security Gateway subsystem. Administrators can modify 
the number of Access services in order to increase or 
decrease the throughput of the Security Gateway 
subsystem. 

3.4. System Controller 
The System Controller is an administrative subsystem 

that configures and reconfigures the distributed Access 
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Control System. The configuration and reconfiguration 
processes are based on the Access Control System Model. 
This model consists of a set of rules that define the 
allowable configurations of the distributed Access 
Control System. For instance, the model specifies that 
each SS Distributed program is connected to exactly one 
MailBox, while it can forward requests to several 
RegAuth services.  

Administrators start the reconfiguration process by 
sending new configuration document to the System 
Controller. During reconfiguration, the System Controller 
uses predefined Distributed program templates and 
supplied target configuration to generate SS and DDS 
Distributed programs. Further, the System Controller 
uses PIE installation mechanisms to deploy application 
services, coopetition services and generated Distributed 
programs over a set of computers available in the 
distributed environment.  

4. Performance Analysis 
 The goal of the analysis is to determine the effect 

different system architectures have on the performance of 
the Access Control System. The analysis is based on the 
measurements done with stress testing application. The 
testing application sends authentication requests to the 
Access Control System and measures processing time. 
The testing application maintains a constant load on the 
Access Control System. In particular, it maintains a fixed 
number of requests processed in the system parallely.  

In this article, we present measurement results for two 
architectures of the distributed Access Control System: 
the Pull architecture and the Push architecture. Figure 5 
presents the Pull architecture. In this architecture, the 
Security Gateway subsystem runs on one machine, while 
the Security Services and Distributed Data Storage 

subsystems are distributed. The machines denoted as 
Work nodes execute a RegAuth service, a SS Distributed 
program, and a DDS Distributed program. Each SS 
Distributed program uses local RegAuth service to 
process the requests, while the RegAuth service uses 
local DDS Distributed program to access the Document 
Store services. We named this architecture Pull 
architecture because work nodes pull the requests from 
the mailbox. Thus, they are competing for the processing 
of the requests. Different configurations of the Pull 
architecture are formed by modifying the number of 
active work nodes and the number of instances of SS 
Distributed program on each work node.  

Figure 6 presents the Push architecture. In this 
architecture there is only one SS Distributed Program 
pulling the requests from the mailbox. The SS Distributed 
program pushes the requests to several work nodes using 
the round robin algorithm. The work nodes in this 
architecture are lighter than in the Pull architecture 
because they do not contain the SS Distributed program. 
Different configurations of Push architecture are formed 
by modifying the number of active work nodes and 
number of instances of the SS Distributed program. 

In the analysis, we also compare against the 
processing times of the monolithic architecture of the 
Access Control System [6]. The monolithic architecture 
executes on two machines: the Web server that processes 
authentication requests and the back-end database server 
that stores virtual organization’s records.  

4.1.  Pull architecture test 
Figure 7 and Figure 8 present the results for the Pull 

architecture. Figure 7 presents the processing time as a 
function of the increasing parallelism in the system, while 
Figure 8 presents the processing time as a function of the 

 

W
or

k 
no

de

W
or

k 
no

de

W
or

k 
no

de Se
cu

rit
y 

Se
rv

ic
es

D
is

tr
ib

ut
ed

 D
oc

um
en

t 
St

or
ag

e

 
Figure 5. Pull architecture of the distributed Access 

Control System 
Figure 6. Push architecture of the distributed Access 
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increasing concurrency. Different levels of parallelism 
are achieved by varying the number of active work 
nodes, with the number of instances of SS Distributed 
programs fixed at three. Different levels of concurrency 
are achieved by modifying the number of instances of SS 
Distributed programs, with the number of work nodes 
fixed at four. Additionally, both graphs show the results 
for the monolithic Access Control System. 

Figure 7 shows that when only three parallel requests 
are processed in the system, there is no significant 
difference in the average processing time of various 
configurations of the Pull architecture and the monolithic 
version of the system. This happens because when there 
is a light load on the system, there are not enough 
requests to fully utilize all of the available work nodes. 
Furthermore, while there is a light load on the system the 
monolithic architecture achieves shortest processing time 
since it does not have the large service communication 
overhead of the distributed version. However, as the 
number of parallel requests sent to the system increases, 
the configurations with more work nodes achieve shorter 
processing times. This happens because these 
configurations can process more requests in parallel. 

Figure 8 shows that modifying concurrency does not 
influence the processing time significantly. However, 
there is an optimal number of instances per work node 

and this number depends on the system workload. For 
light workloads the optimal number of instances is 
smaller then the one for the heavy workloads.  

4.2. Push architecture test 
Figure 9 and Figure 10 present the results for the Push 

architecture. Figure 9 presents the processing time as a 
function of the increasing parallelism in the system, while 
Figure 10 presents processing time as a function of 
increasing concurrency. Different levels of parallelism 
are achieved by varying the number of work nodes of the 
Push architecture, with the number of instances fixed at 
ten. Different levels of concurrency are achieved by 
varying the number of instances of SS Distributed 
program, with the number of work nodes fixed at four.  

Figure 9 demonstrates that increasing parallelism in 
the Push architecture does not influence the processing 
time significantly. This occurs because SS Distributed 
program does not have the knowledge regarding the 
workload on the work nodes and forwards requests using 
the round robin algorithm. Thus, the overloaded and the 
underutilized nodes get the same number of request to 
process. Furthermore, since there are a fixed number of 
requests that SS Distributed program handles 
concurrently, an underutilized node must wait for the an 
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overloaded node to finish processing of a request before 
the SS Distributed program can assign it a new request. 
This scenario makes Push architecture unstable as it leads 
to the unbalanced load of the work nodes. 

Figure 10 shows that the processing time decreases as 
the number of SS Distributed program instances 
increases. This occurs because the number of instances 
dictates the number of requests processed concurrently. 
For instance, if there is only one instance of SS 
Distributed program then only one request is processed 
concurrently. Consequentially, if there are a small 
number of instances and large number of work nodes, 
some work nodes are underutilized. However, if there are 
too many instances, there is no further improvement in 
the processing time due to the unbalanced work nodes 
problem described previously.  

4.3. Comparison of the architectures 
While comparing the processing times of the Push, 

Pull and monolithic architectures, it is notable that 
monolithic architecture achieves better processing times 
when the number of parallel requests is small. However, 
under heavier workloads distributed Push and Pull 
architectures perform better. However, the processing 
time of the Pull architecture is nearly half of the 
processing time of the Push architecture. This happens 
because Pull architecture follows principles of 
Coopetition Based Distributed Architecture more closely 
then the Push architecture. Specifically, in the Pull 
architecture each work node competes for the processing 
of the requests by pulling request from the mailbox. 
Simultaneously, all work nodes are cooperating in 
fulfilling the overall goal of the system. On the other 
hand, in the Push architecture, a central SS Distributed 
program assigns tasks to the work nodes, thus there is no 
competition.  

5. Conclusion 
In this paper, we demonstrate the application of the 

Service-Oriented Programming Model (SOPM) in the 
design of the distributed Access Control System. We 
present two SOPM-based architectures of the distributed 
Access Control System called Push and Pull architecture. 
Furthermore, we show how templates of SOPM 
distributed programs can be utilized for run-time 
reconfiguration of the presented architectures.  

Through experiments, we demonstrate that under 
heavy workloads Push and Pull architectures achieve 
better performance than the monolithic architecture of the 
Access Control System.  Moreover, we show that the Pull 
architecture achieves nearly 50% better processing time 
than the Push architecture. This occurs because in the 

Push architecture, central entity assigns request 
processing to services, while in the Pull architecture, 
services of the system compete for the processing of the 
requests. 
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