
Building Distributed Access Control System Using
Service-Oriented Programming Model

Ivan Zuzak, Sinisa Srbljic

School of Electrical Engineering and
Computing, University of Zagreb, Croatia
ivan.zuzak@fer.hr, sinisa.srbljic@fer.hr

Ivan Benc
Ericsson Nikola Tesla d.d.,

Zagreb, Croatia
ivan.benc@ericsson.com

Abstract

Service-Oriented Programming Model is a new

methodology for building service-oriented applications.
In the Service-Oriented Programming Model, an
application is assembled from loosely coupled,
dynamically bounded services that mutually cooperate
and compete in order to achieve the application’s goal.

 In this paper, we present our experiences with the
Service-Oriented Programming Model attained through
development and testing of Access Control System. The
Access Control System is a service-oriented application
that manages security in the virtual organizations. We
indicate how Service-Oriented Programming Model
facilitates run-time reconfiguration of the Access Control
System. Further, we evaluate and compare the
performance of several architectures of the Access
Control System with different levels of parallelism and
concurrency.

1. Introduction
Service-oriented computing [1] has recently emerged

as a new paradigm for creating distributed applications.
The service-oriented computing creates applications
using the service-oriented architecture [2], an
architectural style that builds applications from loosely
coupled, dynamically bounded services. The service-
oriented architecture introduces a new level of flexibility
because it uses services as implementation independent
software components that can be dynamically discovered,
composed and orchestrated into new services or
applications.

Service-Oriented Programming Model (SOPM) [8] is
a new methodology for the design, development, and
execution of service-oriented applications. The SOPM
utilizes Coopetition Based Distributed Architecture. In
the Coopetition Based Distributed Architecture,
application services mutually cooperate and compete
without central control authority in order to reach the
global goals of the application. The Programmable

Internet Environment1 (PIE) [9] is an environment that
implements the SOPM and enables development and
execution of SOPM-based applications over Internet
infrastructure.

In this paper, we present the application of the SOPM
in a service-oriented Access Control System [7]. Our goal
while building the Access Control System is to explore
the potentials of the run-time reconfiguration of the
SOPM-based applications. Particularly, we investigate
how various application architectures with different
levels of parallelism and concurrency influence the
overall performance of the SOPM-based application.

The remainder of the paper is organized as follows.
Service-Oriented Programming Model is described in
section II. Section III presents the Access Control System
built using SOPM. Section IV gives a performance
analysis of the Access Control System, while section V
gives a conclusion.

2. Service Oriented Programming Model
 The Service-Oriented Programming Model (SOPM)

is a new methodology for building service-oriented
applications. The SOPM is based on the following
principles: Coopetition Based Distributed Architecture,
End-user development framework and Distributed
translation process.

In the Coopetition Based Distributed Architecture
(CBDA) applications are composed of services that
perform local actions without central control authority.
The term coopetition designates that the services
simultaneously cooperate and compete while executing
application goals. Figure 1 presents an application based
on the CBDA. The application consists of Application

1 The Service-Oriented Programming Model, Coopetition Based

Distributed Architecture, Access Control System, and Programmable
Internet Environment are developed at the School of Electrical
Engineering and Computing at the University of Zagreb, Croatia, in
cooperation with Ericsson Nikola Tesla d.d., Zagreb, Croatia, and
cosponsored by Ministry of Science, Education, and Sports through the
national Cro-Grid project. More information is available at:
http://www.ris.fer.hr, http://www.pie.fer.hr and http://www.cro-grid.hr.

services, Coopetition services and Distributed programs.
The Application services implement coarse fragments

of application’s computational logic. These services are
delivered on-demand through globally accessible
network. Alternatively, Application services can be
custom developed in order to provide specific
functionalities. Coopetition services [3] are pre-built
services of the SOPM environment that are used for
coordination and synchronization of the Application
services. These services are Semaphore, MailBox, and
EventChannel. For instance, MailBox supports the
persistent asynchronous communication between services
using message-oriented communication model.
Distributed programs [4] handle cooperation and
competition between Application services. They use
Coopetition services in order to bind and synchronize
Application services into a distributed application.
Distributed programs are specified in a process
description language CL (Coopetition Language) [5],
which consists of the subset of BPEL4WS [11] and
WSDL languages [12].

The End-User development framework is a paradigm
that simplifies development process of distributed
applications founded on Coopetition Based Distributed
Architecture. The End-User development framework is
based on the Simple Services Composition Language
(SSCL) [13], a service composition language targeted at
end-users. The end-users use SSCL to build Distributed
programs. The Distributed translation process transforms
Distributed programs written in SSCL into programs
written in CL. Further, is sets-up the CL programs for
execution on the computers in the SOPM environment.

The Programmable Internet Environment (PIE) [9] is
environment that implements SOPM. PIE supports
development and execution of SOPM-based applications
over Internet infrastructure. Specifically, PIE implements
the coopetition services, the interpreter for the CL
distributed programs, and the translation process for
distributed programs written in the SSCL. In addition,
PIE offers management and deployment tools [5] for
application and coopetition services and the management

tool for the SSCL translation process. Furthermore, PIE
creates a virtual network of service providers.
Applications written for the PIE utilize application
services from the virtual network and services publicly
available on the Internet.

3. Access Control System
The Access Control System is a part of the

infrastructure supporting virtual organizations. A Virtual
organization [10] is a group of users and services that
form a community in which services are used in a secure,
reliable and accountable manner. The Access Control
System operates as organization’s controlling authority
that authenticates members of the virtual organization,
and secures and authorizes access to the services in the
organization.

Figure 2 presents the overall organization of the
distributed Access Control System. The system consists
of four subsystems: Security Gateway, Security Services,
Distributed Document Storage, and System Controller.

Distributed Document Storage (DDS) is a scalable,
fault-tolerant, service-oriented storage system designed
for storage of XML documents. Other subsystems of the
distributed Access Control System use the DDS to store
and fetch XML documents required in the operation of
the virtual organization. The Security Services subsystem
executes registration and authentication services of the
virtual organization. These services enable users and
other services to join and authenticate with the
organization. The Security Gateway acts as a policy
enforcement point that controls the access to the services
exposed in the virtual organization. All service calls in
the virtual organization are tunneled through the Security
Gateway, which authorizes access to the services. The
System Controller is an administrative subsystem that
deploys, configures, and reconfigures distributed Access
Control System over a set of available computers.

3.1. Distributed Document Storage
 Figure 3 presents the structure of the Distributed

Document Storage (DDS). The Distributed Document

Service-Oriented Application

CS 1 CS 2

DP 1 DP 3

AS 1 AS 2 AS 3 AS 4

DP 2

Application
Services

Distributed
Programs

Coopetition
Services

Figure 1. Coopetition Based Distributed Architecture Figure 2. The overall organization of the

distributed Access Control System

Storage consists of Document Store services and DDS
Distributed programs. Document Store services store and
fetch XML documents from their local storage. DDS
Distributed programs coordinate the work of the
Document Store services.

DDS Distributed programs implement the
coordination logic of the DDS. The coordination logic is
based on a mapping table encoded into the bodies of
distributed programs. Each time a DDS Distributed
program receives a document request, it uses the encoded
mapping table to map the request to the Document Store
service that stores a copy of the requested document.
Distributed program forwards the request to the selected
Document Store service, receives the response, and
forwards the response to the requestor. The DDS
maintains the consistency of the copies of documents by
synchronizing document modifications using the
two-phase commit protocol.

The structure of the Distributed Document Storage is
reconfigurable. Access Control System administrators
can modify the number of Document Store services,
mapping of the documents to the Document Store
services and the number of DDS Distributed programs.

3.2. Security Services
Figure 4 presents the structure of the Security Services

subsystem. The subsystem consists of a set of MailBoxes,
RegAuth services and SS Distributed programs. MailBox
services are Coopetition services of the SOPM
environment. Each MailBox serves as a queue of requests
that are pending for processing. The RegAuth services are
SOPM Application services that implement the actual
request processing logic. Each RegAuth service
implements the logic for processing both the registration
and authentication requests. The SS Distributed programs
are SOPM Distributed programs that obtain requests from
MailBoxes and forward them to RegAuth services. Each
SS Distributed program is defined by three parameters:
the Mailbox it uses to obtain the requests, the set of

RegAuth services it forwards the requests to, and the
number of instances it runs concurrently. Number of
instances of the SS Distributed program defines the
number of requests it obtains and processes concurrently.

Members of the virtual organization put registration
and authentication requests into MailBoxes through the
Security Gateway subsystem. The Security Gateway
forwards each request to one of the MailBoxes. One
instance of a SS Distributed program obtains the pending
request from the MailBox and forwards it to one of the
RegAuth services. The RegAuth service decrypts,
verifies, and processes the request. During processing,
the RegAuth service fetches, stores, deletes and updates
documents in the DDS. The SS Distributed program
receives the response from the RegAuth service and
forwards it to the user through the Security Gateway.

The structure of the Security Services subsystem is
configurable. Administrators can modify the number and
placement of MailBoxes, RegAuth services, and SS
Distributed programs. Furthermore, they can modify the
parameters of the SS Distributed programs.

3.3. Security Gateway
The Security Gateway subsystem consists of several

Access services. Each Access service operates as an
independent security-gateway that receives and forwards
service requests according to the security policies and
credentials of the virtual organization. The Access
services fetch the security policies and credentials from
the DDS. Since Access services execute mutually
independently, there is no coordination logic in the
Security Gateway subsystem. Administrators can modify
the number of Access services in order to increase or
decrease the throughput of the Security Gateway
subsystem.

3.4. System Controller
The System Controller is an administrative subsystem

that configures and reconfigures the distributed Access

Security Services

RegAuth
service

. . .

. . .

RegAuth
service

RegAuth
service

RegAuth
service

. . .

To: DDSTo: DDSTo: DDSTo: DDS

SS Distributed
program

SS Distributed
program

SS Distributed
program

SS Distributed
program

SS Distributed
program

SS Distributed
program

MailBox MailBox

From:Security
Gateway

From:Security
Gateway

To:
Security
Gateway

To:
Security
Gateway

To:
Security
Gateway

Figure 3. The organization of the Distributed

Document Storage subsystem
Figure 4. The organization of the Security

Services subsystem

Control System. The configuration and reconfiguration
processes are based on the Access Control System Model.
This model consists of a set of rules that define the
allowable configurations of the distributed Access
Control System. For instance, the model specifies that
each SS Distributed program is connected to exactly one
MailBox, while it can forward requests to several
RegAuth services.

Administrators start the reconfiguration process by
sending new configuration document to the System
Controller. During reconfiguration, the System Controller
uses predefined Distributed program templates and
supplied target configuration to generate SS and DDS
Distributed programs. Further, the System Controller
uses PIE installation mechanisms to deploy application
services, coopetition services and generated Distributed
programs over a set of computers available in the
distributed environment.

4. Performance Analysis
 The goal of the analysis is to determine the effect

different system architectures have on the performance of
the Access Control System. The analysis is based on the
measurements done with stress testing application. The
testing application sends authentication requests to the
Access Control System and measures processing time.
The testing application maintains a constant load on the
Access Control System. In particular, it maintains a fixed
number of requests processed in the system parallely.

In this article, we present measurement results for two
architectures of the distributed Access Control System:
the Pull architecture and the Push architecture. Figure 5
presents the Pull architecture. In this architecture, the
Security Gateway subsystem runs on one machine, while
the Security Services and Distributed Data Storage

subsystems are distributed. The machines denoted as
Work nodes execute a RegAuth service, a SS Distributed
program, and a DDS Distributed program. Each SS
Distributed program uses local RegAuth service to
process the requests, while the RegAuth service uses
local DDS Distributed program to access the Document
Store services. We named this architecture Pull
architecture because work nodes pull the requests from
the mailbox. Thus, they are competing for the processing
of the requests. Different configurations of the Pull
architecture are formed by modifying the number of
active work nodes and the number of instances of SS
Distributed program on each work node.

Figure 6 presents the Push architecture. In this
architecture there is only one SS Distributed Program
pulling the requests from the mailbox. The SS Distributed
program pushes the requests to several work nodes using
the round robin algorithm. The work nodes in this
architecture are lighter than in the Pull architecture
because they do not contain the SS Distributed program.
Different configurations of Push architecture are formed
by modifying the number of active work nodes and
number of instances of the SS Distributed program.

In the analysis, we also compare against the
processing times of the monolithic architecture of the
Access Control System [6]. The monolithic architecture
executes on two machines: the Web server that processes
authentication requests and the back-end database server
that stores virtual organization’s records.

4.1. Pull architecture test
Figure 7 and Figure 8 present the results for the Pull

architecture. Figure 7 presents the processing time as a
function of the increasing parallelism in the system, while
Figure 8 presents the processing time as a function of the

W
or

k
no

de

W
or

k
no

de

W
or

k
no

de Se
cu

rit
y

Se
rv

ic
es

D
is

tr
ib

ut
ed

 D
oc

um
en

t
St

or
ag

e

Figure 5. Pull architecture of the distributed Access

Control System
Figure 6. Push architecture of the distributed Access

Control System

increasing concurrency. Different levels of parallelism
are achieved by varying the number of active work
nodes, with the number of instances of SS Distributed
programs fixed at three. Different levels of concurrency
are achieved by modifying the number of instances of SS
Distributed programs, with the number of work nodes
fixed at four. Additionally, both graphs show the results
for the monolithic Access Control System.

Figure 7 shows that when only three parallel requests
are processed in the system, there is no significant
difference in the average processing time of various
configurations of the Pull architecture and the monolithic
version of the system. This happens because when there
is a light load on the system, there are not enough
requests to fully utilize all of the available work nodes.
Furthermore, while there is a light load on the system the
monolithic architecture achieves shortest processing time
since it does not have the large service communication
overhead of the distributed version. However, as the
number of parallel requests sent to the system increases,
the configurations with more work nodes achieve shorter
processing times. This happens because these
configurations can process more requests in parallel.

Figure 8 shows that modifying concurrency does not
influence the processing time significantly. However,
there is an optimal number of instances per work node

and this number depends on the system workload. For
light workloads the optimal number of instances is
smaller then the one for the heavy workloads.

4.2. Push architecture test
Figure 9 and Figure 10 present the results for the Push

architecture. Figure 9 presents the processing time as a
function of the increasing parallelism in the system, while
Figure 10 presents processing time as a function of
increasing concurrency. Different levels of parallelism
are achieved by varying the number of work nodes of the
Push architecture, with the number of instances fixed at
ten. Different levels of concurrency are achieved by
varying the number of instances of SS Distributed
program, with the number of work nodes fixed at four.

Figure 9 demonstrates that increasing parallelism in
the Push architecture does not influence the processing
time significantly. This occurs because SS Distributed
program does not have the knowledge regarding the
workload on the work nodes and forwards requests using
the round robin algorithm. Thus, the overloaded and the
underutilized nodes get the same number of request to
process. Furthermore, since there are a fixed number of
requests that SS Distributed program handles
concurrently, an underutilized node must wait for the an

0

2

4

6

8

10

12

14

16

18

20

Monolithic 1 Work
node

2 Work
nodes

3 Work
nodes

4 Work
nodes

Av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

[s
]

 3 parallel requests
 8 parallel requests
 15 parallel requests
 24 parallel requests

0

1

2

3

4

5

6

7

8

9

10

Monolithic 1 instance 2 instances 3 instances 4 instances

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

[s
]

 3 parallel requests
 8 parallel requests
 15 parallel requests
 24 parallel requests

Figure 7. Processing times of Pull architecture

configurations with different levels of parallelism
Figure 8. Processing times of Pull architecture

configurations with different levels of concurrency

0

2

4

6

8

10

12

14

16

18

20

Monolithic 1 Work
node

2 Work
nodes

3 Work
nodes

4 Work
nodes

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
[s

]

 3 parallel requests
 8 parallel requests
 15 parallel requests
 24 parallel requests

0

5

10

15

20

25

30

35

40

Monolithic 1
instance

4
instances

6
instances

8
instances

10
instances

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
[s

]

 3 parallel requests
 8 parallel requests
 15 parallel requests
 24 parallel requests

Figure 9. Processing times of Push architecture

configurations with different levels of parallelism
Figure 10. Processing times of Push architecture
configurations with different levels of concurrency

overloaded node to finish processing of a request before
the SS Distributed program can assign it a new request.
This scenario makes Push architecture unstable as it leads
to the unbalanced load of the work nodes.

Figure 10 shows that the processing time decreases as
the number of SS Distributed program instances
increases. This occurs because the number of instances
dictates the number of requests processed concurrently.
For instance, if there is only one instance of SS
Distributed program then only one request is processed
concurrently. Consequentially, if there are a small
number of instances and large number of work nodes,
some work nodes are underutilized. However, if there are
too many instances, there is no further improvement in
the processing time due to the unbalanced work nodes
problem described previously.

4.3. Comparison of the architectures
While comparing the processing times of the Push,

Pull and monolithic architectures, it is notable that
monolithic architecture achieves better processing times
when the number of parallel requests is small. However,
under heavier workloads distributed Push and Pull
architectures perform better. However, the processing
time of the Pull architecture is nearly half of the
processing time of the Push architecture. This happens
because Pull architecture follows principles of
Coopetition Based Distributed Architecture more closely
then the Push architecture. Specifically, in the Pull
architecture each work node competes for the processing
of the requests by pulling request from the mailbox.
Simultaneously, all work nodes are cooperating in
fulfilling the overall goal of the system. On the other
hand, in the Push architecture, a central SS Distributed
program assigns tasks to the work nodes, thus there is no
competition.

5. Conclusion
In this paper, we demonstrate the application of the

Service-Oriented Programming Model (SOPM) in the
design of the distributed Access Control System. We
present two SOPM-based architectures of the distributed
Access Control System called Push and Pull architecture.
Furthermore, we show how templates of SOPM
distributed programs can be utilized for run-time
reconfiguration of the presented architectures.

Through experiments, we demonstrate that under
heavy workloads Push and Pull architectures achieve
better performance than the monolithic architecture of the
Access Control System. Moreover, we show that the Pull
architecture achieves nearly 50% better processing time
than the Push architecture. This occurs because in the

Push architecture, central entity assigns request
processing to services, while in the Pull architecture,
services of the system compete for the processing of the
requests.

6. References
[1] M. P. Singh and M. N. Huhns: “Service-Oriented

Computing: Semantics, Processes, Agents”, John Wiley &
Sons Ltd, 2005.

[2] M. P. Papazoglou and D. Georgakopoulos: “Service
Oriented Computing”, Communications of the ACM,
Volume 46, Issue 10, October 2003, pp. 25-28.

[3] A. Milanovic, S. Srbljic, D. Skrobo, D. Capalija, and S.
Reskovic: “Coopetition Mechanisms for Service-Oriented
Distributed Systems“, Proceedings of the 3rd International
Conference on Computing, Communication and Control
Technologies, Vol. I, Computer Technologies, Austin,
Texas, USA, 2005, pp. 118-123.

[4] D. Skrobo, A. Milanovic, and S. Srbljic: “Distributed
program Interpretation in Service-Oriented Architectures“,
Proceedings of the WMSCI 2005, The 9th World Multi-
Conference on Systemics, Cybernetics and Informatics,
Vol. IV, Computer Techniques, Orlando, Florida, USA,
2005, pp. 193-197.

[5] M. Podravec, I. Skuliber, and S. Srbljic: “Service
Discovery and Deployment in Service-Oriented
Computing Environment“, Proceedings of the WMSCI
2005, The 9th World Multi-Conference on Systemics,
Cybernetics and Informatics, Vol. III, Architectures, Tools
and Distributed Systems, Orlando, Florida, USA, 2005, pp.
5-10.

[6] I. Benc, M. Stefanec, and S. Srbljic: “Usage-tracking by
Public Information System Mediator”, in Proceedings of
the IEEE MELECON 2004, Croatia, 2004, pp. 723-726.

[7] S. Srbljic et al: “Service Development and Application
Integration with Public Information System Mediator”, in
Proceedings of the IEEE MELECON 2004, Croatia, May
2004, pp. 713-718.

[8] A. Milanovic: “Service-Oriented Programming Model”,
Ph.D. thesis, School of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia,
December 2005, original title in Croatian “Programski
model zasnovan na uslugama”.

[9] S. Srbljic et al.: “Programmable Internet Environment –
PIE”, School of Electrical Engineering and Computing,
Zagreb and Ericsson Nikola Tesla, Zagreb, www.pie.fer.hr

[10] I. Foster, C. Kesselman, and S. Tuecke: ”The Anatomy of
the Grid Enabling Scalable Virtual Organizations”. Lecture
Notes in Computer Science, vol. 2150, pp. 1-4, 2001.

[11] T. Andrews et al.: “Business Process Execution Language
for Web Services (BPEL4WS)”, Microsoft, IBM, Siebel
Systems, BEA, and SAP, version 1.1, May 2003,
http://www.ibm.com/developerwors/webservices/library/w
s-bpel.

[12] E. Christensen, F. Curbera, G. Meredith and S.
Weerawarana: “Web Services Description Language
(WSDL)”, Microsoft and IBM version 1.1, March 2001,
http://www.w3.org/TR/wsdl.

[13] I. Gavran, A. Milanović, and S. Srbljić: "End-User
Programming Language for Service-Oriented Integration",
7th Workshop on Distributed Data and Structures, Santa
Clara, CA, USA, January 2006

