
Application Middleware for convergence of IP Multimedia system and Web

Services

Ivan Budiselic, Ivan Zuzak
School of Electrical Engineering and Computing

University of Zagreb

Zagreb, Croatia

E-mail: ivan.budiselic@fer.hr, ivan.zuzak@fer.hr

Ivan Benc
Ericsson Nikola Tesla d.d.

Zagreb, Croatia
E-mail: ivan.benc@ericsson.com

Abstract - Current network applications are typically created

for one of two worlds. Communication applications targeting

mobile devices usually communicate using the SIP protocol

and are integrated into IP Multimedia systems of mobile

network operators. On the other hand, applications targeting

the enterprise market typically adhere to the SOAP protocol

and integrate with Web Services exposed on the Internet.

However, existing and future applications would benefit from

access to services exposed by both of these protocols in both

the mobile network and the Internet. In this paper we present

the architecture of an application middleware that acts as a

bidirectional gateway among IP Multimedia and Web

Services systems. The middleware provides infrastructure for

SIP and SOAP message handling, and session and network

resource management. The middleware exposes interfaces for

defining application specific rules for communication between

protocol domains. Lastly, we outline a domain specific

language that simplifies definition of such rules.

I. INTRODUCTION

In the last decade, the Internet has evolved from a
network for serving documents and exchanging e-mail to a
network of services. Driven by divergent user demands and
expectations, services are built on top of different
platforms and communicate using different protocols. In
recent years, mobile devices have gained Internet access,
bringing new challenges in protocol interoperability. While
implementing non-native protocol stacks overcomes
protocol boundaries for new services, integrating numerous
existing services requires other approaches.

This paper presents an approach for integrating Session
Initiation Protocol (SIP) services and Web Services that
use the SOAP messaging protocol. In the context of this
paper, a SIP service is a computer process that uses the SIP
protocol to expose some functionality. SIP is a text-based
application layer protocol used primarily in VoIP and
video session management [1]. Extensions of SIP are used
in other areas, such as instant messaging and event
notification. SIP is also used as the main signaling protocol
in the Internet Multimedia Subsystem (IMS) [2]. IMS is a
functional architecture designed for creation and
deployment of multimedia telecommunication services
over IP.

The Web Services standards family [3] defines a set of
protocols for implementing systems based on the principles
of Service Oriented Architecture (SOA) [4]. The basis of
the Web Services stack [5] are SOAP, WSDL and UDDI, a
set of XML based protocols and standards for service
invocation, description, and discovery. SOAP uses HTTP

or SMTP as transport protocols, which coupled with being
XML based, makes Web Services platform independent.
The Web Services standards family is widely used in
enterprise environments, primarily for intra-organization
service interoperability.

In this paper we propose an application middleware
architecture for user defined and application specific
interoperation of SIP and SOAP services [6,7]. Throughout
this paper the term application refers to a system that
provides its functionality through composition of one or
more SIP services and Web Services. The main design goal
for the architecture was to develop a general application
middleware that enables definition of application specific
bidirectional exchange of SIP and SOAP messages. We
achieve this by separating the core logic for message
parsing and generation from the application specific logic
which controls inter-protocol message conversion and
message flow between middleware users. Application
specific logic is specified through user-defined plug-ins
called triggers which must conform to a simple yet general
interface. Message conversion triggers are loaded
dynamically in order to enable a single middleware
instance to serve different and multiple applications
simultaneously. Furthermore, we designed an XML based
domain specific language for specifying the message
conversions and message flow which can be used for
automated trigger generation.

The rest of the paper is structured as follows: Section 2
gives an overview of problems specific to integrating SIP
and SOAP protocols and gives a survey of related
approaches taken by other research projects. Section 3
describes an example use case for SIP and SOAP
interoperation while Section 4 presents the architecture of
the proposed application middleware. Section 5
summarizes the results of applying the general purpose
application middleware to the use case presented in Section
3. Also, we give an overview of the benefits of the
proposed architecture in integrating SIP and SOAP
protocols. Finally, Section 6 concludes the paper.

II. INTEGRATION OF SIP AND SOAP PROTOCOLS

Integrating SIP and SOAP presents several challenges
arising from the differences in the intended use of the
protocols. Since SIP is a stateful and SOAP primarily a
stateless protocol, the fundamental challenge lies in the
differences in state management. SIP is designed to be used
mainly for VoIP signaling and thus SIP nodes locally store
session state. This state is associated with what is called a

SIP phone

SIP DOMAIN SOAP DOMAIN

Web Service provider

SENSOR

NETWORK

AD-HOC SIP/WS

GATEWAY

SIP
messages

SOAP
messages

Fig. 1. SIP/WS integration use-case

transaction and usually includes authentication tokens and
Quality of Service (QoS) settings.

Contrary to the statefulness of SIP, one of the main
principles in SOA is keeping services stateless [5]. Since
storing state in local buffers couples the service to the user
it reduces the number of requests that can be served at the
same time. With this in mind, the SOAP protocol was
designed to be a stateless request-response protocol.

A possible way for a stateful service to communicate
over a stateless protocol is by sending application specific
state information in message headers [8], which is also the
approach used in our project. Furthermore, in order to
support multiple applications running concurrently through
the same application middleware, a common SIP/SOAP
session must be maintained so that incoming messages can
be associated with the appropriate application. The details
of state management in the proposed middleware
architecture are described in Section 4.

Due to the popularity of both SIP and Web Services, a
lot of research aims to integrate these protocols. In [10],
the possibility of integrating SIP with multimedia Web
Services is explored in a way that allows service initiation
not only from SIP or SOAP nodes, but also through
dynamic service binding,. However, the solution requires
that all nodes implement both the SIP and Web Services
protocol stacks which is a limiting factor in real-world
applications.

A similar approach was taken in the Web Service SIP
(WSIP) concept [11] where each node implements both the
SIP and Web Services stack. In a particular session, the
client maintains separate SIP and SOAP processes that
communicate within protocol bounds with the server’s SIP
and SOAP processes, respectively. The authors consider an
alternative approach in which SOAP messages could be
embedded into the Session Description Protocol (SDP) part
of SIP INVITE messages. However, they dismiss the
option since there is no standard in this area which
decreases the interoperability of the services. They also
acknowledge the problem of storing session state and
propose that state be inserted into SOAP message
envelopes.

In a more recent paper [12], the same group of authors
describes a new protocol called Web Services Initiation
Protocol (WSIP) that is also a dual-stack solution. To
support sessions, WSIP relies on WS-Session [13], a
standardized extension to the basic WS stack which
specifies how a Web Service based session establishment
will result in a unique sessionID for the client, which is
subsequently included in a SOAP header of all the
messages in that session. To support full duplex
communication, every node hosts two services with
separate WSDL descriptions, one for the client and one for
the server role.

A different approach to accessing mobile Web Services
trough SIP by relying on the IP Multimedia Subsystem
(IMS) Service Architecture Specification is described in
[14]. The IMS is used to provide mobility and session
management, as well as message routing, security and
billing. The authors introduce Mobile Web Services as Web
Services that are accessed by a mobile device. These
mobile devices are assumed to have a full Web Services
protocol stack installed, so no special provisions are
required for consuming a Web Service.

In summary, most research is focused on upgrading
devices in the SIP domain with the Web Services protocol
stack, and vice versa. While this can be a good solution
when creating new services with interoperability in mind, it
does not ease integration of existing services. We take a
different approach in which devices need not be upgraded
to dual stacks. Rather, the proposed application
middleware acts as a gateway between systems and makes
all the message exchange conversions and coordination
required. This allows the usage of the middleware in
situations where there is an unchangeable separation
between protocol domains, e.g. SIP nodes cannot
communicate using SOAP. Additionally, existing services
that use either SIP or SOAP can communicate with each
other through the middleware without change.

III. USE CASE OF SIP AND SOAP INTEGRATION

We illustrate the use of the proposed middleware system
with a use case of SIP-SOAP integration. An application-
level gateway was developed for this use case. Through
this gateway, we were able to formulate a set of
requirements for the proposed general application
middleware architecture described in this paper. These
requirements are discussed at the end of this section.

Fig. 1 presents the integration use case. Information
gathered from a sensor network is exposed through a Web
Service. The sensor network monitors temperature in
several rooms in a building. A mobile user with a SIP
phone wants to access the current sensor information, but is
unable to do so directly because the SIP phone doesn't
implement the Web Services protocol stack, and therefore
cannot compose or parse SOAP messages. Similarly, the
Web Service provider does not implement the SIP
protocol, and thus cannot deal with SIP messages.

As a solution, we introduced an application-level
SIP/WS gateway that presents a SIP interface to the SIP
client for accessing the sensor network. The SIP client
initiates communication by sending a SIP message to the
gateway. Since the Web Service supports both synchronous
and asynchronous data retrieval, the gateway mirrors this
functionality in its SIP interface. To provide synchronous
data retrieval, the gateway sends a SOAP message to the
Web Service and extracts the data from the SOAP
response. For asynchronous retrieval, the gateway exposes
a single-method callback Web Service to the sensor
network service.

The message sequence for synchronous communication
with the sensor network service is depicted in Fig. 2. The
SIP phone sends a SIP SUBSCRIBE message (1) with the
Expires header set to 1 indicating a one-time pull
operation. The gateway parses the received SIP message,

SIP Phone
Sensor Network

Web Service
Ad-hoc Gateway

SIP

messages

(1) SUBSCRIBE Expires=1

(3) WS: getSensorData()

(4) NOTIFY (XML data)

subscription-state: Active

(2) 200 OK

Sensor Data

(5) 200 OK

(6) NOTIFY

subscription-state: Terminated
(7) 200 OK

SOAP

messages

Fig. 2. Synchronous data retrieval

SIP Phone
Sensor Network

Web Service
Ad-hoc Gateway

SIP

messages

SOAP

messages

(1) SUBSCRIBE Expires>1

(2) 200 OK

(3) WS: setSubscriptionStatus()

subscription confirmation
(4) NOTIFY

subscription-state: Active

(6) WS: sendSensorData()

data received confirmation

(5) 200 OK

(7) NOTIFY (XML data)

subscription-status: Active
(8) 200 OK

(9) NOTIFY

subscription-status: Terminated
(10) 200 OK

subscription limit

exceeded

Fig. 3. Asnychronous event notification

sends a SIP OK response message back to the SIP phone
(2), constructs a SOAP message according to predefined
application specific rules and sends it to the Web Service
in the SOAP domain (3). To allow multiple users to access
the sensor network Web Service at the same time, the
gateway internally stores a link between the SIP transaction
identifier (the Call-ID header of the SIP SUBSCRIBE
message) and the TCP connection it opens to the Web
Service. After the Web Service responds with the requested
sensor data in a SOAP response message, the gateway
extracts the required result, looks up the related SIP
transaction identifier and replies to the SIP client with a
SIP NOTIFY message (4) containing the requested data.
Finally, the session is terminated with an OK-NOTIFY-OK
sequence (5-7).

Fig. 3 presents the asynchronous mode of operation in
which the SIP user sets limits for the sensor readings and
gets notified when a limit is exceeded. First, the SIP client
specifies the subscription duration in seconds in the
Expires header of the SUBSCRIBE message (1).
Additionally, the client specifies which sensor parameters
should be monitored and what their limit values are. The
gateway then registers the subscription (3) and notifies
success to the client (4). To allow asynchronous
notification by the sensor Web Service, the ad-hoc gateway
exposes a callback SOAP Web Service interface. If a
sensor value reaches the set subscription limit, the sensor
network Web Service invokes the gateway service’s
sendSensorData method with the event XML message (6).
Finally, the gateway relays the event description to the
client (7) and the session is terminated (8-10).

By creating the described application-level gateway, we
were able to allow SIP clients to use the sensor network
Web Service by using SIP exclusively, unaware of Web
Service SOAP interactions.

From analyzing the requirements for the application-
level gateway, some requirements for the general SIP/WS
application middleware become apparent. First, the
middleware must maintain a unified session between its
SIP and SOAP clients. In the presented use case, all the
messages shown in Fig. 2 and 3 are part of the same unified
session. The purpose of the unified session is to associate
related messages to each other, providing them with the
necessary context from previous messages. Second, the
middleware must store this context so it can persist through
the duration of a session. For example, in the sensor
network use case, the gateway had to store the value of the
Call-ID SIP header to define the unified session, as well as
the value of the Expires header in the asynchronous mode
of operation. Additionally, some applications require the
ability to persist data across sessions. For example, in order

to reduce message size, the SIP client application in the use
case only sends request parameters on the first request and
in case the parameters change. Since every request is
processed in a separate session, the request parameters
need to be stored across multiple sessions.

Third, to allow asynchronous communication with
SOAP clients and applications initiated by a SOAP
message, the middleware must be able to create and expose
Web Services interfaces to external systems.

A further set of requirements originates from the goal of
general interoperability of SIP and SOAP. To make the
application middleware architecture capable of handling
diverse SIP-SOAP interactions, the design must enable
user defined plug-ins that define the particulars of an
application. Specifically, users must be able to define
specific message sequences for their use case. To simplify
this process, users should be provided with a simple
language for defining these message sequences.
Additionally, the architecture should support multiple SIP
and SOAP clients communicating in the same application.

IV. SIP/WS APPLICATION MIDDLEWARE

Fig. 4 shows the architecture of the developed SIP/WS
application middleware. The generic SIP/SOAP message
handling module contains the logic for receiving, parsing,
composing and sending SIP and SOAP messages. The data
storage module contains data structures for maintaining
unified SIP-SOAP sessions and application specific data.
Application specific data can persist either for the duration
of a session or through several sessions in a single
application. Application specific logic that defines an
application’s message flow and data persistence is
abstracted away behind a trigger interface. All available
triggers are stored in the trigger repository module.
Finally, the arbiter module acts as the control unit of the
system. The arbiter controls the message flow through the
system, manages the loading of triggers into memory and
updates the data storage.

Therefore, the middleware is used in two ways –
application developers create and store triggers into the
trigger repository, while clients use the middleware for

Generic SIP/SOAP

message

handling

Arbiter

Data storage

Trigger
repository

SIP phone

SIP

 DOMAIN

SOAP

 DOMAIN

Web Service
 provider

SIP/WS

gateway

SIP
messages

SOAP
messages

Trigger

1

Trigger

2

Fig. 4. SIP/WS application middleware modular structure

fdf

SIP receiver

(1)

SIP sender (8)

Outgoing SIP

Incoming SIP

SIP generator

 (6)

SIP parser (3)

receiveSIP (2)

sendSIP (7)

Outgoing SOAP

Incoming SOAP

SOAP

Generator

(14)

SOAP parser

 (11)

receiveSOAP (10)

sendSOAP (15)

SOAP receiver

 (9)

SOAP sender

 (16)

inSIP (4)

outSIP (5)

inSOAP (12)

outSOAP (13)

Arbiter

Generic SIP/SOAP message handling

Fig. 5. Internal structure of the message handling module

consuming cross-protocol services modeled by triggers. To
initiate communication, a SIP or SOAP client sends a
request message to the application middleware. The request
is processed by the message handling module and the
arbiter is notified that a new request was received. The
arbiter then searches the trigger repository for a trigger that
defines the application specific logic for the particular
message exchange and loads that trigger into memory. The
arbiter passes the received message to the loaded trigger
which replies with a list of messages that need to be sent
out and updates the data storage. Finally, the arbiter passes
the outgoing messages to the message handling module.

A. Generic SIP/SOAP Message Handling Module

The message handling module communicates with the
arbiter through four message queues. These queues relay
data structures representing incoming or outgoing SIP and
SOAP messages. The internal structure of the module is
presented in Fig. 5.

The module consists of a SIP receiver (1) which listens
for incoming SIP messages on the network interface and
inserts them into the recieveSIP queue (2). The SIP parser
(3) picks up incoming messages from the queue, parses
them into memory data structures, and inserts the structures
into the inSIP queue (4) from where they are eventually
picked up by the arbiter. The SIP parser used in the
SIP/WS application middleware was generated by an
ABNF parser generator [7,9].

Similarly, when the system needs to send a SIP message,
the arbiter constructs a data structure describing the
outgoing SIP messages and pushes it into the outSIP queue
(5). The SIP generator (6) takes the data structure from the
outSIP queue, constructs the corresponding SIP message
and pushes it into the sendSIP queue (7). The SIP sender
(8) module then takes the message from the queue, and
sends it to the destination on the network. The module
structure for SOAP message handling is analogous to the
structure for SIP message handling (9-16).

B. Data storage module

The data storage consists of two data structures: the
session info and the application info. The purpose of the
session info data structure is to provide context to the
application trigger when determining if a received message
belongs to the active unified session of the application, or it
is the first message of a new session. Application specific
data required to persist only for the duration of a single
session can also be stored in the session info data structure.

The session data depends on the particular services being
interconnected and is defined in the application specific
triggers. For example, for the use case described in Section
3, the SIP participant is identified using the Call-ID header
value and From and To header tags which are known after
the initial SUBSCRIBE-OK message sequence. On the
SOAP side, the Call-ID is used as a session identifier and
is inserted into all SOAP messages. The value of the
Expires header which indicates a one-time data pull
operation or the subscription duration is also stored in the
session info data structure.

The application info data structure is used to store
information that persists across multiple sessions. To use
this functionality, the application trigger defines a global
application identifier that must be present in messages in
all related sessions. For example, in the example discussed
in section 3, every one-time pull operation is done in a
separate session. However, the SIP client application only
sends the request body on the first request or when the
request changes. Subsequent requests only contain headers
in order to reduce message size. To support this kind of
operation, the request body can be stored in the application
info data structure.

C. Triggers and the Trigger repository

In order to create an application by connecting services
through the SIP/WS application middleware, an application
specific plug-in called a trigger must be created. The
middleware uses the trigger to determine the appropriate
reaction to received messages. For each received message,
the trigger defines how the session and application info
data structures need to be updated, and which outgoing
messages need to be sent out. SIP/WS middleware triggers
are stored in the trigger repository and fetched during
processing of incoming messages. While an application is
active, an instance of the trigger governing that application
is called an active trigger.

To achieve an open pluggable architecture, the SIP/WS
application middleware defines a uniform interface of three
methods that each trigger must implement:
getApplicationId, match and activate. All methods operate
on the received message and the match and activate
methods are given access to session and application data.
The getApplicationId method must return the identifier of
the application that a given SIP or SOAP message belongs

Arbiter

Data storage Trigger

repository

Trigger

Read/write access

Read-only access

activate

getAppId

match

(1)

(2)

(2)

(3)

(4)

(5)

Fig. 6. Role of triggers in the SIP/WS middleware

to. The semantics of the application identifier are
application specific and are defined in the getApplicationId
method of every trigger using data unique to that
application. For example, in the sensor network use case,
the application identifier can be created based on the
location of the sensor network Web Service and the SIP
client URI when the initial SIP message is received.

The match method defines the sequence of steps that the
application middleware will execute in response to a
received message. This sequence is returned as a list of
action names that is then passed to the activate method to
execute. Purge and delete actions are predefined in the
middleware while other actions must be defined within the
trigger. Purge resets the application by clearing all session
and application data associated with the received message,
while delete terminates the application by clearing all
session and application data and unloading the trigger from
the middleware. The result of each action is a set of
outgoing messages and changes in the data storage.

Fig. 6 illustrates how triggers are used when a message
arrives to the middleware. Upon receiving a message, the
arbiter must first find the trigger which can handle the
received message. For each candidate trigger, the arbiter
passes the message descriptor to the getApplicationId
method (1). The arbiter then passes the message descriptor
and read-only access to the data associated with the
application identifier to the match method of the trigger
(2). When the arbiter finds a trigger that returns a
nonempty action list from the match method, it passes the
returned action list along with the message descriptor to the
trigger’s activate method (3). The activate method is given
write access to the data associated with the application
identifier. The activate method modifies the data store (4)
and returns descriptors of outgoing messages to the arbiter
(5). The arbiter then sends the messages using the message
handling module.

V. APPLICATIONS OF THE SIP/WS MIDDLEWARE

In this section we present a short overview of Protocol
Conversion and Coordination Language (PCCL) [6,7], an
XML based language designed specifically for defining
SIP/WS application middleware triggers. Based on a PCCL
definition, a PCCL compiler generates an executable
trigger which can be loaded into the middleware trigger
repository. Due to the constraint of limited space, we
demonstrate the usage of the language only with several
parts of the trigger definition that drives the sensor network
example described in Section 3.

A PCCL definition consists of three parts: definitions of
SOAP services (WS element), definitions of matching
conditions (protocol element), and definitions of actions
(action element). The WS element defines which SOAP
services may be invoked by the trigger, while the action
element defines the exact sequence of actions which will be
executed if a message satisfies the condition defined in the
protocol element. Since information about a SIP endpoint
must be inserted into headers of outgoing SIP messages,
there is no SIP element. Instead, the source of the required
header values is determined inside action elements. Fig. 7
presents the WS element of the PCCL definition for the
sensor network Web Service. The element defines ws1 as
the logical identifier of the service while the wsdl and
location elements define the address of the service WSDL
document and endpoint. The ID elements declare Web
Service methods that can be invoked by the application
middleware. The WS element is also used to define Web
Services exposed by the middleware, in this use case the
sendSensorData method.

Fig. 7. Web Service definition

The main logic of the trigger is defined in the protocol
and action elements. The protocol elements define which
actions will be executed depending on the content and type
of the received message. Fig. 8 presents the protocol
element defining the one-time data pull operation.

Fig. 8. Protocol element for the one-time data pull operation

The name attribute of the protocol element and type
attribute of the message element define the protocol and
message type for which an action is being defined. In this
example, an action is defined for incoming SIP
SUBSCRIBE messages. For each message type, a sequence
of condition elements is used to direct the middleware’s
actions based on the message contents and the application
and session state. For the one-time data pull operation, the
Expires header must be equal to one, which is specified by
the EQ element. The exec element lists the actions that
must be executed if all the conditions are met. In this case,

<protocol name="SIP">

 <message type="SUBSCRIBE">

 <contition>

 <if>

 <EQ left="header:Expires" right="1" type="int" />

 <exec> OneTimePull </exec>

 </if>

 </condition>

 </message>

</protocol>

<WS name="ws1">

 <wsdl>http://192.168.02./WS/sensor.asmx?WSDL</wsdl>

 <loc> http://192.168.02./WS/sensor.asmx </loc>

 <host> 192.168.0.2 </host>

 <ID soapAction="setSubscriptionStatus" />

 <ID soapAction="getSensorData" />

</WS>

all the logic is stored in a single action called
OneTimePull, outlined in Fig. 9.

Fig. 9. Action element for the one-time data pull operation

Each action element contains a sequence of get, set and
send elements used to extract information from the
received message, set session state and define outgoing
messages. In the example, regular expressions are used in
the get element for extracting the room identifier and
storing it into session data, while the set element sets the
session state to "One Time Pull". The first send element
defines a SIP OK message, while the second send element
references the sensor network Web Service through the
service attribute, and uses the arg sub element to specify
that the method argument value is the room identifier
extracted from the received SIP request.

VI. CONCLUSION

The possibility to create applications that integrate IMS
exposed services and Web services becomes increasingly
important. Up to date, however, the principal way to
implement such applications was to enable applications to
communicate with both SIP and SOAP protocols used for
accessing services in these two domains.

The middleware presented in this paper enables creating
applications crossing boundaries of IP Multimedia and
Web services systems. The middleware provides a modular
message handling infrastructure, application state
management and network resource management. The
advantage of the developed middleware over existing
solutions is the plug-in based system for creating
applications. Application specific plug-ins define the
middleware behavior in response to received messages by
changing its internal state and sending outgoing messages.
Furthermore, to ease the development of applications, we
introduce an XML-based language for defining plug-ins.

VII. ACKNOWLEDGMENTS

This work was done during the course of Summer Camp
2007 jointly organized by the Ericsson Nikola Tesla d.d.
and Faculty of Electrical Engineering and Computing,
University of Zagreb.

REFERENCES

 [1] J. Rosenberg, R. Shockey, “The Session Initiation Protocol

(SIP): A key component for Internet telephony”, Computer

Telephony, vol. 8, issue 6, Jun. 2000.

 [2] G. Bertrand, “The IP Multimedia Subsystem in Next

Generation Networks”, May 2007.,

http://www.rennes.enst-bretagne.fr/~gbertran/files/IMS_an

_overview.pdf

 [3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S.

Weerawarana, “Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI”, IEEE Internet

Computing, vol. 6, no. 2, pp. 86–93, Mar./Apr. 2002.

 [4] M. N. Huhns, M. P. Singh, “Service-oriented computing:

key concepts and principles”, IEEE Internet Computing,

vol. 9, Issue 1, pp. 75–81, Jan./Feb. 2005.

 [5] T. Earl, “SOA – Principles of Service Design”, Prentice

Hall, Jul. 2007., ISBN: 9780132361132

 [6] I. Benc, I. Skuliber, T. Stefanec, “System for dynamically

adaptive multi-way conversion and coordination of SIP and

SOAP”, patent pending

 [7] I. Budiselic, G. Delac, D. Sego, T. Stefanec, “SIP/WS

interworking triggering gateway”, Summer Camp 2007

Book of abstracts “New generation network applications &

protocols”, ISBN: 9531841209

 [8] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.

Ferguson, F. Leymann, M. Nally, T. Storey, S.

Weerawaranna, “Modeling stateful resources with

WebServices”, Version 1.1, Globus Alliance, May 2004.

 [9] T. Stefanec, “ABNF parser generator” Summer Camp

2006 Book of abstracts “One step ahead: Advanced

applications and network support functions”, ISBN:

9531841098

[10] H. Cai, W. Lu, B. Yang, L. Tang, “Session Initiation

Protocol and Web Services for next generation multimedia

applications,” IEEE Fourth International Symposium on

Multimedia Software Engineering, Dec. 2002., pp.70

[11] F. Liu, W. Chou, L. Li, J. Li., “WSIP - Web service SIP

endpoint for converged multimedia/multimodal

communication over IP,”, IEEE International Conference

on Web Services, Jul. 2004., pp. 690-697

[12] W. Chou, L. Li, F. Liu, “Web services methods for

communication over IP”, Proceedings of the IEEE

International Conference on Web Services, Jul. 2007., pp.

372-379

[13] ECMA international, “WS-Session - Web Services for

Application Session Services”, 2nd edition, Jun. 2008.,

http://www.ecma-international.org/publications/standards/

Ecma-366.htm

[14] G. Gehlen, F. Aijaz, Y. Zhu, and B. Walke, “Mobile P2P

Web Service creation using SIP”, Fourth International

Conference on Advances in in Mobile Computing and

Multimedia, Dec. 2006, pp. 39-48

<action name="OneTimePull" inType="SIP">

 <get type="string" location="header:method">

 "?room="$mySession.roomID$""

 </get>

 <set state="One Time Pull" />

 <send protocol="SIP" type="OK" />

 <send protocol="SOAP" name="getSensorData"

 type="Request" service="ws1">

 <arg name="roomID" type="string">

 $mySession.roomID$

 </arg>

 </send>

</action>

http://www.google.hr/url?sa=t&source=web&ct=res&cd=4&url=http%3A%2F%2Frepository.gunadarma.ac.id%3A8000%2FMoMM82006_312.pdf&ei=s8TmSffNHcLdsgbS4JSbBw&usg=AFQjCNF00-2EGhr8hGV4y5nbKBDbnRusUg&sig2=Txzn0s-vM5IPW9P9g7ZDVA
http://www.google.hr/url?sa=t&source=web&ct=res&cd=4&url=http%3A%2F%2Frepository.gunadarma.ac.id%3A8000%2FMoMM82006_312.pdf&ei=s8TmSffNHcLdsgbS4JSbBw&usg=AFQjCNF00-2EGhr8hGV4y5nbKBDbnRusUg&sig2=Txzn0s-vM5IPW9P9g7ZDVA

