
A Classification Framework for

Web Browser Cross-Context Communication

IVAN ZUZAK

School of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
izuzak@gmail.com, ivan.zuzak@fer.hr

MARKO IVANKOVIC
Google Inc.

Brandschenkestrasse 110, CH-8002 Zurich, Switzerland
ivankovic.42@gmail.com, markoi@google.com

IVAN BUDISELIC
School of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia

ibudiselic@gmail.com, ivan.budiselic@fer.hr

Demand for more advanced Web applications is the driving force behind Web browser

evolution. Recent requirements for Rich Internet Applications, such as mashing-up data

and background processing, are emphasizing the need for building and executing Web
applications as a coordination of browser execution contexts. Since development of such

Web applications depends on cross-context communication, many browser primitives and

client-side frameworks have been developed to support this communication. In this paper
we present a systematization of cross-context communication systems for Web browsers.

Based on an analysis of previous research, requirements for modern Web applications

and existing systems, we extract a framework for classifying cross-context communica-
tion systems. Using the framework, we evaluate the current ecosystem of cross-context

communication and outline directions for future Web research and engineering.

Keywords: Web browsers, Web applications, browser execution contexts, cross-context
communication, mashups, systematization, classification, evaluation

Communicated by: to be filled by the Editorial

1 Introduction

The evolution of the Web may be seen in the evolution of Web applications provided to sat-

isfy user demand [1]. Accordingly, Web browsers are rapidly evolving to support execution of

such applications. Where early Web applications were simple interlinked documents, recent

Web applications, known as Rich Internet Applications (RIA) [2], show an increase in func-

tionality, user-friendliness and responsiveness, and therefore in complexity. One recent trend

1



2 A Classification Framework for Web Browser Cross-Context Communication

is seen in mashups [3, 4], Web application portletization [5], personal learning environments

[6] and complex widget-based applications, such as Geppeto [7], in which the client-side of

the Web application is designed and executed as a composition of semi-isolated Web browser

contexts, such as frames. This trend is emphasized even more with the recent introduction of

Web workers [8] through which browsers provide Web applications with GUI-less background

processing contexts similar to threads in operating systems. In essence, Web browsers are

evolving into environments for execution of Web applications [9], similar to operating systems

that execute multi-process and multi-threaded applications.

Development of modern Web applications therefore depends on Web browsers supporting

interaction between contexts, similar again to supporting inter-process communication in

operating systems. However, enabling cross-context communication has historically been a

difficult task due to the Same-origin security policy (SOP) [10] implemented in browsers. SOP

almost completely restricts Web applications executing in a browser from communicating with

entities on different trust domains, also called origins. As a consequence of implementing SOP,

for a long time Web browsers lacked native primitives both for same-origin and cross-origin

cross-context communication. Consequently, Web applications developers used and often

misused insecure browser primitives intended for other purposes, like browser cookies and

window location fields, to enable cross-context data transfer [11, 12, 13].

However, driven by industry demand for modern Web applications and browser compati-

bility, new primitives for cross-context and cross-origin communication are being standardized

and implemented as a part of the HTML5 group of standards [14]. At the same time, many

client-side frameworks are being built on top of both unstandardized and standardized prim-

itives, offering support for legacy browsers, cross-browser support and many other features

like security and high-level programming models. Today, Web researchers and engineers face

a complex ecosystem of cross-context communication systems in which it is often difficult

not only to discern each system’s capabilities and benefits over other systems, but also to

be aware about the issues affecting the operation and usage of such systems. Therefore, the

field of Web engineering [15], as “the application of systematic, disciplined and quantifiable

approaches to development, operation, and maintenance of Web-based applications”, should

provide better support for understanding and managing cross-context communication in Web

applications.

In this paper we present a systematization of the Web browser cross-context commu-

nication ecosystem. Our systematization provides both a broader and a deeper view of

cross-context communication through the following contributions. First, we analyze previous

research results related to this field. Second, we define a multi-dimension framework for clas-

sification of cross-context communication systems. Fourth, we consistently apply the defined

framework to existing cross-context communication systems. Although some browser primi-

tives and systems analyzed in our work have also been analyzed in previous research, these

previous analyses were not systematic and were mainly focused on security aspects. More-

over, our framework includes criteria that reflect cross-context communication requirements

of modern and next-generation Web applications, such as Web worker support, reliability,

discovery and high-level communication models. Lastly, we analyze the evaluation results

and give directions for future cross-context communication research and engineering practice.

The remainder of the paper is organized as follows. In Section 2, we introduce basic con-



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 3

cepts of cross-context communication in Web browsers. In Section 3 we give an overview of

existing research related to cross-context communication. Section 4 presents our classifica-

tion framework and evaluation of existing cross-context communication systems. Section 5

discusses the presented framework and evaluation results, also proposing directions for future

work. Section 6 concludes the paper.

2 Web Browser Contexts And Cross-Context Communication

In the context of the architecture of the WorldWideWeb [16], browsers are user-agents

which fetch and execute server resource representations, i.e. HTML documents and applica-

tions. Browsers manage the execution of each Web application using semi-isolated environ-

ments called browser execution contexts, sometimes also called script contexts [17, 18, 19].

Web applications may be built from many parts, each part executing in its own context. For

example, a mashup Web application [4] may contain a widget for displaying locations on a

map together with a widget for displaying Wikipedia information on specific locations, each

in its own context.

Each browser execution context contains an event loop which coordinates events, user

interaction, rendering and networking of the part of the Web application executing within

that context [14]. Most importantly, event loops coordinate the execution of JavaScript scripts

of the Web application. Since JavaScript is a single-threaded language with no concurrency

primitives, an event loop also executes in a single thread of execution. However, since the

execution of an event loop in one context is independent of the execution of other contexts,

event-loops of different contexts may execute concurrently. Furthermore, each context has

an associated origin derived from the URI from which the Web application part executing in

that context was retrieved. The origin [22] is a tuple consisting of the normalized scheme,

host and port parts of an URI, for example (“http”, “www.example.com”, “80”). Notably,

the origin does not include the path, query and fragment parts of an URI. The origin is an

important property of browser execution contexts as it was and still is the basis for designing

browser security policies, as explained later in this section.

Two types of browser execution contexts exist: window contexts and worker contexts. A

window context is an environment in which Web applications are presented to the user through

the use of a graphical user interface (GUI) [14]. Window contexts consist of a browsing

context that displays the user interface and an event loop that interprets JavaScript scripts

and manages GUI interaction and other events. Examples of window contexts are browser

windows and tabs, iframe objects and frames in a frameset [14]. In contrast, worker contexts,

introduced only recently with the Web Workers specification [8], consist only of an event loop

[8] and may be thus considered as GUI-less window contexts. Furthermore, worker contexts

must be associated with at least one parent window or worker context. According to the

number of parent contexts they may be associated with, worker contexts are further divided

into two classes: dedicated worker contexts and shared worker contexts. While dedicated

worker contexts are associated with only a single parent context, shared worker contexts may

be associated with multiple parent contexts.

Window contexts are created either directly by the browser as a result of the user request-

ing the execution of a Web application resource located at a specific URI or programmatically

from already executing window contexts. In contrast, worker contexts may be created only



4 A Classification Framework for Web Browser Cross-Context Communication

programmatically from already existing contexts. Furthermore, browser execution contexts

may create and nest other contexts which enable the parent and child context to maintain

a programmatic and sometimes visual relationship. Window contexts may nest both other

windows contexts, specifically frames and iframes, and worker contexts. Nesting of window

contexts enables composition of GUIs of multiple Web application parts on a single screen,

for example a portal page containing many widgets. In contrast, worker contexts may nest

only other worker contexts.

In essence, a Web browser is a platform which executes Web applications, where each Web

application is a set of browser execution contexts hierarchically organized into a tree starting

from a browser window or tab context. Figure 1 shows a simplified view of a Web browser

which executes two Web applications. Web application A consists of three window context;

the top-level window (c1) and two nested iframes (c3 and c4). Similarly, Web application B

consists of one window context and two hierarchically nested worker contexts; the top-level

window (c2) and two dedicated Web workers (c5 and c6).

Fig. 1. Simplified view of a Web browser executing two Web applications.

The correct operation of multi-context Web applications depends on the interaction be-

tween contexts. For example, widgets may need to exchange data for display on a GUI, as

shown for example in Figure 1 for communication between context c3 and c4, or a window

context may need to pass data to a worker context for background processing, as shown in

Figure 1 for communication between context c2 and c5. Therefore, systems are needed that

enable cross-context communication as a process of transferring data across browser context

boundaries. We define cross-context communication as any kind of data transfer between any

two context executing in any two browsers, which may be initiated programmatically. For

example, we do not consider user-driven copy-pasting or drag-and-dropping data from one

context to another [23] to be a cross-context communication process. Cross-context communi-

cation may be thus seen as a generalization and extension of inter-window communication and

inter-iframe communication, terms which have usually been used for denoting communication

between window contexts [20, 21].



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 5

Historically, the main problem with development of cross-context browser communication

systems was related to security aspects of communication. Specifically, in order to prevent

many types of attacks on their users, Web browsers implement a security policy called the

Same-origin policy (SOP). The SOP policy [22] restricts scripts executing in browser con-

texts to communication only with contexts with the same origin and with server resources

with the same origin. In other words, cross-origin communication, as shown in Figure 1 for

communication between contexts c1 (origin o1) and c3 (origin o3), was denied by the browser,

while same-origin communication, as shown on Figure 1 for communication between contexts

c3 (origin o3) and c4 (origin o3) was allowed. Since most early Web applications were either

static or executed within a single context, they did not require cross-origin cross-context com-

munication capability and cross-context communication primitives were not being provided

by browsers or developed as external systems.

However, as Web applications evolved and their requirements for cross-context communi-

cation increased, developers started misusing other browser primitives to achieve even rudi-

mentary cross-origin cross-context communication. For example, browsers disregard the same-

origin policy for certain cases [10, 11, 18, 19] such as redirecting a window context to a new

URI and accessing the list of directly nested iframes of a window context [14]. Browser cookies

also have a different security policy which grants access based on the resource origin but ex-

cluding the scheme and port parts and including the path part [24, 25], which isn’t compatible

with SOP. Only recently with the development of the HTML5 specification [26, 14] have Web

browsers started implementing native and secure cross-origin cross-context communication

primitives. Consequently, security attributes of cross-context communication systems varied

from browser to browser and were the subject of extensive research, while other attributes

of communication were mostly unresearched. Still, modern Web applications require commu-

nication features which have not been systematically explored and analyzed, a problem we

address in this paper.

3 Related Work

In this section we give an overview of research that contributed to the analysis and system-

atization of cross-context communication systems. Most previous research activities were

focused on evaluating and comparing security properties of cross-context communication sys-

tems based on browser primitives not intended for cross-context communication. Other re-

search was focused on designing new browser primitives and client-side libraries that overcome

specific security deficiencies.

One of the earliest critiques of the lack of secure browser primitives for cross-context

communication was given by the proposal of the <module> HTML tag and API [26, 27].

Although it was never standardized or implemented, the proposal inspired research of the

later standardized HTML5 postMessage API [14]. A list of several similar early research

proposals is given in [28]. In [26] two techniques for communication between window contexts

are analyzed with respect to confidentiality and authenticity; fragment identifier messaging

(FIM) and higher-level protocols based on FIM, and the postMessage API.

In [29] the authors analyze whether existing and proposed browser mashup communication

primitives enable communication between two principals, browser contexts for example, with-

out ceding complete control to each other. Vulnerabilities of primitives are illustrated through



6 A Classification Framework for Web Browser Cross-Context Communication

several proof-of-concept attacks and recommendations for prevention are given. Furthermore,

an evaluation of design choices for access control aspects of communication primitives is given;

for example, using values versus objects for communication. In [30] the authors demonstrate

that the existing browser security model was not designed to support multi-context Web appli-

cations, and that as a consequence these are typically implemented insecurely. The paper also

emphasizes the need for higher-level communication abstractions and presents a secure com-

ponent model based on a publish-subscribe communication abstraction. In [31] a critique of

cross-context communication based on browser cookies is given with respect to security. The

paper also recognizes the security disadvantages of using server-side proxies for cross-context

communication. Furthermore, a proposal for a secure publish-subscribe communication sys-

tem is given. In [11] the authors analyze incoherencies in browser access control policies. A

special part of this analysis are browser resource types which may be shared among principals

and their interaction, which is a subset of cross-context communication systems.

In [20] the authors analyze inter-widget communication, a specific application of cross-

context communication, with the purpose of maximizing usability of widget-based personal

learning environments. The analysis is based on a framework for categorization of inter-

widget communication systems, an approach similar to the one we present later in this paper.

For example, the authors distinguish between same-browser and cross-browser communica-

tion, inter-widget and intra-widget communication, several types of event distribution, such

as broadcast and direct subscription, and several types of security and semantic interoper-

ability. However, the framework is strongly focused on end-user usability of inter-widget

communication and does not take into account many technical dimensions of cross-context

communication, such as discovery, cross-origin support and reliability.

The most recent and broad analysis of browser primitives for Web application interactivity

is given in [32]. The authors present results of a usage analysis of several new browser

primitives implemented in browsers as a part of the HTML5 group of standards. The results

show that the postMessage API, Web Storage API [33] and the Web SQL Database APIs [34]

are being used insecurely. Moreover, the authors give insights into why these primitives can

potentially be hard to use safely and propose the economy of liabilities principle in designing

security primitives - a primitive must minimize the liability that the user undertakes to ensure

application security. The authors also propose several enhancements to the postMessage API

to shift the burden of verifying and ensuring security properties from the developer to the

browser.

Another relevant field of research is secure architectures for modern Web browsers. In

this research field, the browser and management of Web applications are observed at a lower

level with regard to operating system integration and inter-process communication. Still, this

work is the foundation for implementing communication abstractions at the Web application

level. The security architecture of the open-source Chromium browser is described in [35].

In Chromium, the traditional monolithic architecture of browsers is replaced with an archi-

tecture based on two modules in separate protection domains: a browser kernel, interacting

with the operating system, and a rendering engine, executing with restricted privileges in a

sandbox. The authors describe the security advantages of the architecture and describe how

other architectures make it difficult to implement cross-context communication primitives.

The architecture of Gazelle, a secure Web browser constructed as a multi-principal operating



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 7

system, is presented in [25]. Gazelle’s security model protects principals, contexts from dif-

ferent origins, by separating their resources into hardware-isolated protection domains. The

authors describe benefits of aligning the browser architecture with the SOP policy and analyze

cross-principal interaction possibilities.

Lastly, operating systems (OS) [36] have been extensively researched through the last

decades providing valuable experience for designing browsers as multi-context execution en-

vironments. Specifically, multi-process applications and inter-process communication mech-

anisms designed for OSes provide a starting point for cross-context browser communication

research. However, these mechanisms were seldom taken into account in previous cross-context

communication research.

In conclusion, cross-context communication is still an unresearched field and trailing be-

hind industry requirements. First, since SOP has been a major issue for the last several

years, research has been focused mainly on security aspects of cross-context communication

and disregarded other aspects. Second, since until recently only window contexts were in use,

no prior research includes worker contexts in their analyses. Third, many existing systems

for cross-context data exchange have similarly received little attention. Fourth, there is no

systematic approach aimed at analyzing cross-context communication or a broad systemati-

zation of existing systems. Fifth, existing operating systems IPC mechanism research has not

been integrated into cross-context communication research. Our systematization presented

in the next section addresses some of the stated challenges.

4 Systematization Of Cross-Context Browser Communication Systems

This section presents our systematization of cross-context browser communication systems.

The purpose of the systematization is three fold. First, we provide a framework for classifica-

tion of cross-context communication systems. The developed framework is a multidimensional

space in which each dimension represents one system characteristic and dimension values cor-

respond to alternatives for that characteristic. A specific system design corresponds to a point

in the design space [37]. Second, we clarify the current state of cross-context communication

systems by applying the presented framework to existing systems. Third, we propose future

research and engineering directions based on this evaluation of existing systems and future

Web application requirements.

Although the framework and evaluation of systems are presented separately, their research

and definition was interwoven. First we gathered existing systems and evaluated those us-

ing dimensions from existing body of research combined with existing engineering concepts

from IPC mechanisms from operating systems. Afterwards, we defined additional dimensions

in order to enable clearer understanding and comparison of systems. We iterated this pro-

cess until the set of dimensions covered most design choices of existing systems and possible

requirements of future systems.

4.1 Classification Framework

The classification framework consists of a set of dimensions relevant for research and evalu-

ation of cross-context communication systems. Each dimension is described separately with

rationale explaining its importance as an explicit system characteristic and possible alterna-

tives.



8 A Classification Framework for Web Browser Cross-Context Communication

Type of system – We differentiate four types of systems with regard to span of the

system’s implementation, as shown on Figure 2. The most basic systems are browser prim-

itives, i.e. mechanisms provided by the browser itself. Client-side frameworks are systems

that build their logic on top of browser primitives and don’t require any components out-

side the browser. These two types of systems are pure client-side systems as they do not

require any server-side components. However, the following two types of systems require

external components. A system that additionally requires calls to a server component but

only to coordinate communication is called a server-mediated coordination framework, while

a system that routes messages through a server component outside the browser is called a

server-mediated communication framework.

Fig. 2. Types of cross-context communication systems.

The significance of this dimension is twofold. First, as the span of the system’s implemen-

tation increases, the system’s run-time performance is expected to decrease due to increased

implementation complexity and network traffic. Furthermore, server-mediated coordination

and especially communication frameworks may suffer from scalability issues as the number

of communicating contexts increases. Second, the increase of the implementation span is

commonly correlated with the increase in system functionality; browser primitives offer basic

communication mechanisms while third-party frameworks build on top of them and offer ease

of use and other features. For example, because server-mediated communication frameworks

route messages outside the browser, these types of systems may also be used for communica-

tion between contexts executing in different browsers.

Window context support and worker context support – These two dimensions

reflects the system’s support for communication with window contexts and worker contexts,

respectively.

Cross-origin support – This dimension denotes the system’s degree of support for com-

munication between contexts with different origins. Other than systems that support only

same-origin cross-context communication and systems that support cross-origin cross-context

communication, a third type of system exists with regard to this dimension. These systems

support communication between contexts on the same domain and path. As more and more



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 9

Web applications are built from context of different origins, this dimension determines the

gradual increase in applicability of systems, from those supporting only same-origin commu-

nication, to that supporting full cross-origin communication.

Cross-application support – This dimension reflects the system’s support for com-

munication between contexts of different Web applications. As we explain in Section 2, a

Web application is defined with the top-level window context of a Web browser, such as a

browser window or tab, together with all other window and worker contexts nested within that

top-level context. Therefore, cross-application cross-context communication systems support

communication between contexts nested within different top-level contexts.

This dimension is orthogonal to the Cross-origin support dimension because contexts in

different Web applications may have equal or different origins. Furthermore, this dimension is

also orthogonal to the Type of system dimension. Although server-mediated communication

frameworks usually do support communication between contexts of different browsers, this

behavior is not implied. Similarly, systems with cross-application support need not achieve

this support using server-mediated communication.

The significance of this dimension is in its relation not only to cross-browser communi-

cation, but also to communication between Web applications executing in the same browser.

Specifically, Web applications are increasingly built as to provide local APIs for their remote

services to other applications executing in the browser [38]. For example, consuming URL

shortening services provided by the URL shortening Web application which the user uses.

Communication model – One of the more important dimensions is the communication

programming model [36] which the observed system exposes to Web application develop-

ers. Message-oriented communication is based on contexts sending and receiving structured

messages. In shared memory systems, contexts communicate indirectly by reading from and

writing to a shared data space. In remote procedure call systems, communication is based on

contexts invoking procedures on remote context and receiving responses of invocations, as if

the procedures were implemented locally. In publish-subscribe systems, contexts communicate

indirectly by publishing messages to channels, named virtual entities, which route messages

to all subscribers subscribed to those channels.

The significance of this dimension is in its relation to ease of achieving application goals.

Application goals of different multi-context Web applications are significantly easier to im-

plement using a specific communication model versus using other models. Lower-level pro-

gramming models, like message-oriented and shared memory, commonly require a larger code

overhead to implement application goals than higher-level ones, such as remote procedure call

and publish-subscribe.

Naming – Contexts that want to communicate must have a way to refer to each other, a

fundamental function of naming. This dimension denotes the type of entity and its semantics

used to refer to communicating entities when using the observed system. In other words,

programmers using a cross-context communication system use these entities to refer to browser

execution contexts.

In most cross-context communication systems, contexts are referred to directly, using con-

text object references which are JavaScript references to browser contexts. These references

may be obtained in several ways; for example worker context references are obtained when

creating Web workers while window context references are usually obtained by special browser



10 A Classification Framework for Web Browser Cross-Context Communication

APIs for traversing context hierarchies. Some systems also support forms of indirect com-

munication where naming entities are not context object references. Some systems support

referring to window contexts using the document URI of the document executing in that

context. Other systems use custom string names, for example channel names in publish-

subscribe systems, or a combination of context object references and custom string names,

such as destination procedures in remote procedure call systems.

Discovery – This dimension denotes whether or not the observed system supports discov-

ery of communicating entities, implemented through discovery of entities used for naming. In

widget-based applications consisting of multiple widget contexts, widgets are often unaware

of each other i.e. whether a specific widget has even been loaded and if so, how to obtain a

reference to it. For example, the iGoogle portal generates random strings for widget iframes

names which complicates obtaining a reference to the wanted context manually.

Distribution scheme – This dimension denotes the kinds of distribution schemes sup-

ported by the observed system. The unicast scheme defines communication towards a single

context, the multicast scheme defines communication towards a defined set of contexts, and

the broadcast scheme defines communication towards all contexts in the application, except

the sender.

Maximum message length – This dimension denotes the limit in size of data sent

and received using the observed system. For message-oriented, publish-subscribe and remote

procedure call systems this denotes the maximum message size while for shared memory

systems this denotes the maximum size of a single shared memory location. The system is

unrestricted with respect to this dimension if it does not limit the size of data, while otherwise

it is restricted to a specific size (in kilobytes or megabytes), for example, restricted to 5kB.

However, browsers may additionally restrict message lengths of otherwise unrestricted systems

for security or reliability reasons; for example, to prevent memory depletion.

Transport system – Systems other than browser primitives are implemented using ex-

isting cross-context communication systems for data transfer. This dimension denotes the

names of other systems used to implement the observed system. As complex frameworks

commonly inherit properties of underlying systems, such as performance and browser sup-

port, knowledge of the underlying systems is an important instrument for determining the

suitability of a particular framework.

Reliability – Since browser contexts run in parallel and may be created dynamically by

scripts executing in other contexts, the destination context may not be ready for receiving

messages at the moment in which the source context is sending them. For example, in an

aggregator Web application with several widgets one widget may want to send a message to

another widget which has either not yet been created or not fully loaded. Therefore, some

messages may be unknowingly lost.

Therefore, communicating contexts need a mechanism to guarantee a certain degree of

reliable and fault-tolerant communication. This dimension denotes if the observed system

has such mechanisms or is otherwise considered unreliable. Some systems implement a retry

mechanism by which the sender retries the communication if no confirmation of success is re-

ceived. Other systems use a queuing mechanism that delays communication until the receiver

is available.

Communication confidentiality – This dimension denotes whether or not communi-



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 11

cation performed using the observed system is confidential. In other words, communication

is confidential if no other contexts except the intended receivers may read the communicated

data. Otherwise, communication confidentiality is unsupported.

Communication integrity – This dimension denotes the degree to which the observed

system restricts unauthorized modification of communicated data. If the communicated data

may be modified without authorization and if no mechanisms are provided to receivers to

check if the data was modified, communication integrity is said to be unsupported by the

system. However, if mechanisms for verifying data integrity are provided by the system,

communication integrity is said to be verifiable. Lastly, if communicated data may not be

modified without authorization, communication integrity is said to be supported.

Authentication of sender and receiver – Authentication is the act of verifying a claim

of identity, which may be performed implicitly by the system or explicitly by the sender or

receiver. These two dimensions denote whether or not the observed system supports that

contexts sending or receiving data may not falsify their identity. In other words, if a con-

text sending data may falsify its identity, established through naming, then communication

does not support sender authentication. Similarly, if a context receiving data may falsify its

identity, established through naming, then communication does not support receiver authen-

tication.

Authorization of sender and receiver – These two dimensions denote whether or not

the observed system supports that contexts sending data specify intended receiver contexts

or that contexts receiving data may specify from which contexts data is to be accepted. The

specification of these properties is often expressed using authorization policies, which are of-

ten based on the concept of origins or even finer-grained with respect to context URIs. In

Web applications using cross-context communication systems without support for authoriza-

tion, contexts receiving data must implement application-level logic to support authorization

policies, if such support is even possible to implement. However, if supported, authorization

policies usually either specify a single authorized context or specify access control whitelists

for authorizing multiple contexts.

Generality of applicability – This dimension denotes the degree of applicability of the

observed system when developing Web applications. Most existing systems have been devel-

oped as generic frameworks and may be used for implementing cross-context communication

in any Web application. However, some systems are application specific and may be used only

in a subset of applications. For example, some systems may be used only for communication

between contexts that host Google Gadgets. Although limited in use as is, these systems

are still considered in this paper since they represent a substantial part of the cross-context

communication ecosystem.

Browser support – This dimension denotes the names and versions of major Web

browsers which support the observed system. Internet Explorer, Firefox, Chrome, Safari

and Opera are considered major Web browsers.

4.2 Evaluation of Existing Systems

In this section we present an evaluation of existing cross-context browser communication

systems according to the framework established in the previous section. However, as the

number of existing systems and the number of dimensions are both large, a full evaluation



12 A Classification Framework for Web Browser Cross-Context Communication

would require more space than permitted. Therefore, we restrict our evaluation to subsets of

existing systems and framework dimensions.

First, the evaluation does not include server-mediated communication frameworks. The

number of these systems is potentially very large since any kind of system for transferring

data on the Web is applicable. We address this issue further in the next section. For similar

reasons, the evaluation does not include various browser plugins and extensions, like Flash

[39] and Silverlight [40]. Furthermore, the evaluation does not include both numerous patents

published in this area [12, 41, 42, 43] and unimplemented research projects.

Second, systems are not evaluated according to several security-related dimensions, namely

communication confidentiality, communication integrity, and sender and receiver authentica-

tion, which have been addressed in previous research. Furthermore, the browser support

dimension was also left out due to lack of time for thorough testing of all evaluated systems

in all the major browsers on all major operating systems.

Tables 1, 2 and 3 presents the summary of the evaluation. In the following paragraphs, we

give short notes on the evaluated cross-context communication systems and give references

for more detail on each system.

The simplest system for communication between same-origin window contexts is direct

access [14] which enables the sender to access the memory space of the receiver, including

variables and functions, as if it was local to the sender. In order to achieve cross-origin commu-

nication, this primitive system was later replaced with manipulations of browser mechanisms

which ignore the cross-origin constraint. The fragment identifier messaging (FIM) system [13]

uses the location property of window context objects which contains the URI of the document

loaded in the context. The location property enables any sender to write but not to read the

fragment part of the receiver’s URI. Only the receiver context can read the URI fragment

data making the fragment identifier a simple form of shared-memory. However, the message

size of this system is limited by browser restrictions on URI length. A system similar to

FIM was developed using the window.name property of window objects [44]. Furthermore,

browser cookies, intended for session storage, were also used for implementing shared-memory

communication, however with a same-domain communication restriction [14, 24].

Due to low reliability, cross-browser support and sometimes inappropriate programming

models of these systems, new message-oriented frameworks were developed on top. The Cross-

Frame framework [45] is an extension of FIM while the complex window name framework [46]

is an extension of the window.name method. However, in order to enable a message-oriented

model, the frameworks use a server component to initiate communication. These systems

were accompanied by other frameworks based on browser-specific features enabling message-

oriented cross-origin communication, namely the RMR system [45] on WebKit based browsers

(Safari, Chrome), the NIX system [45] on Internet Explorer browsers and the FrameElement

system [45] on Gecko based browsers (Firefox).

The standardization of cross-context communication was addressed by the HTML5 spec-

ification. The specification defines two APIs for secure, reliable and message-oriented cross-

origin communication: the postMessage API [14] and the Channel messaging API [14]. As

most new versions of popular Web browsers implement these two APIs, they have become

the de facto standard for message-oriented cross-context communication. However, most Web

applications need to support older browsers that do not implement the new HTML5 APIs.



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 13

Table 1. Evaluation of existing cross-context communication systems according to the Type

of system, Window context support, Worker context support, Cross-origin support and Cross-
application support dimensions. Legend: Type of system: browser = browser primitive, client

side = client side framework, server coord = server-mediated coordination framework, server

comm = server-mediated communication framework. Window context support, Worker context
support, Cross-application support: + = supported, - = unsupported.

Cross-context
communica-
tion system

Type of
system

Window
context
support

Worker
context
support

Cross-
origin

support

Cross-
application
support

Direct access browser + - same-origin -
FIM browser + - cross-origin -

Window name browser + - cross-origin -

Cookies browser + -
same

domain+path
+

CrossFrame server coord + - cross-origin -
Complex win-
dow name

server coord + - cross-origin -

RMR client side + - cross-origin -
NIX client side + - cross-origin -
Frame Element browser + - cross-origin -

postMessage browser + - cross-origin -
Channel messag-
ing

browser + + cross-origin -

XSS interface
client side,

server coord
+ - cross-origin -

Google Closure
client side,

server coord
+ - cross-origin -

jQuery postMes-
sage

client side + - cross-origin -

OMOS
client side,

server coord
+ - cross-origin -

Shindig rpc
client side,

server coord
+ - cross-origin -

easyXDM
client side,

server coord
+ - cross-origin -

Window post-
Messge plugin

client side + - cross-origin -

jsChannel client side + - cross-origin -
Web intents server coord + - cross-origin +

sMash server coord + - cross-origin -

Shindig pubsub
client side,

server coord
+ - cross-origin -

OpenAjax Hub
client side,

server coord
+ - cross-origin -

open-app
client side,

server coord
+ - cross-origin -

pmrpc client side + + cross-origin -

LocalStorage browser + - same-origin +
WebDatabase browser + + same-origin +

IdexedDB browser + + same-origin +

CrossDomain
Storage

server coord + - cross-origin -

WebWorker
postMessage

browser - + same-origin -

jQuery hive client side - + same-origin -



14 A Classification Framework for Web Browser Cross-Context Communication

Table 2. Evaluation of existing cross-context communication systems according to the Com-

munication model, Naming, Discovery, Distribution scheme and Maximum message length
dimensions. Legend: Communication model: msg = message-oriented, sh-mem = shared memory,

rpc = remote procedure call, pubsub = publish-subscribe. Naming: obj ref = context object

references, doc uri = document URI, custom str = custom string names. Discovery: + = sup-
ported, - = unsupported. Distribution scheme: 1:1 = unicast, 1:N = multicast, 1:all = broadcast.

Maximum message length: max = unrestricted, X KB/MB = restricted to X kilobytes/megabytes.

Cross-context
communica-
tion system

Communication
model

Naming Discovery
Distribution

scheme

Maximum
message
length

Direct access sh-mem, rpc ctx obj - 1:1 max

FIM sh-mem ctx obj - 1:1 2KB, max
Window name sh-mem ctx obj - 1:1 2MB, max
Cookies sh-mem string - 1:1, 1:N 4KB, max

CrossFrame msg ctx obj - 1:1 2KB, max
Complex win-
dow name

msg ctx obj - 1:1 max

RMR msg ctx obj - 1:1 max

NIX msg ctx obj - 1:1 max
Frame Element msg ctx obj - 1:1 max
postMessage msg ctx obj - 1:1 max

Channel messag-
ing

msg ctx obj - 1:1 max

XSS interface msg
doc URI,

string
- 1:1 max

Google Closure msg ctx obj, string - 1:1 max
jQuery postMes-
sage

msg ctx obj - 1:1 max

OMOS rpc string - 1:1 max
Shindig rpc msg, rpc string - 1:1 max

easyXDM msg, rpc, pubsub
doc URI,

string
-

1:1, 1:N,
1:all

max

Window post-
Messge plugin

rpc ctx obj, string - 1:1 max

jsChannel msg, rpc ctx obj, string - 1:1 max
Web intents msg, rpc string + 1:1 max

sMash pubsub string -
1:1, 1:N,

1:all
max

Shindig pubsub pubsub string -
1:1, 1:N,

1:all
max

OpenAjax Hub pubsub string -
1:1, 1:N,

1:all
max

open-app pubsub string -
1:1, 1:N,

1:all
max

pmrpc msg, rpc, pubsub ctx obj, string +
1:1, 1:N,

1:all
max

LocalStorage sh-mem string - 1:1, 1:N 5MB, max
WebDatabase sh-mem string - 1:1, 1:N 5MB, max

IdexedDB sh-mem string - 1:1, 1:N max

CrossDomain
Storage

sh-mem string - 1:1, 1:N 5MB, max

WebWorker
postMessage

msg ctx obj - 1:1 max

jQuery hive msg ctx obj, string - 1:1 max



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 15

Table 3. Evaluation of existing cross-context communication systems according to the Transport

system, Reliability, Authorization of sender, Authorization of receiver and Generality of applica-
bility dimensions. Legend: Reliability: - = unreliable. Authorization of sender, Authorization

of receiver: - = unsupported, single = single authorized context, acl = access control whitelist.

Generality of applicability: generic = generic system, specific = application specific system.

Cross-context
communica-
tion system

Transport system Reliability
Author.

of
sender

Author.
of

receiver

Generality
of app.

Direct access - - - - generic
FIM - - - - generic
Window name - - - - generic

Cookies - - - - generic
CrossFrame FIM, direct access - - - generic
Complex win-
dow name

Window name - - - generic

RMR FIM - - - generic
NIX opener property - - - generic
Frame Element Direct access - - - generic

postMessage - - - single generic
Channel messag-
ing

- - - single generic

XSS interface CrossFrame, postMessage - single - generic

Google Closure
CrossFrame,

post-Message, Frame
Element, NIX, RMR

queueing - - generic

jQuery postMes-
sage

FIM, postMessage - single - generic

OMOS CrossFrame, postMessage - acl - generic

Shindig rpc
CrossFrame,

post-Message, Frame
Element, NIX, RMR

queueing - - specific

easyXDM
Complex window name,
FIM, NIX, post-Message

retries acl - generic

sMash CrossFrame - acl acl generic

jsChannel postMessage queueing single single generic
Window post-
Messge plugin

FIM, postMessage - - - generic

Web intents
postMessage, WebWorker
postMessage, LocalStorage

- - - generic

Shindig pubsub Shindig rpc queueing - - specific

OpenAjax Hub
NIX, CrossFrame,

postMessage
- - - generic

open-app Shindig pubsub queueing - - specific
pmrpc postMessage retries acl acl generic

LocalStorage - - - - generic
WebDatabase - - - - generic

IdexedDB - - - - generic
CrossDomain
Storage

postMessage, LocalStorage - acl - generic

WebWorker
postMessage

- - - - generic

jQuery hive WebWorker postMessage - - - generic

This motivated the development of many frameworks, like XSSinterface [50], the Google Clo-

sure library [49] and jQuery postMessage [51], that implemented the postMessage or similar



16 A Classification Framework for Web Browser Cross-Context Communication

message-oriented interface using either browser APIs or, as a fallback, previously described

message-oriented frameworks.

Furthermore, some Web applications require a different communication model to achieve

application goals. OMOS [52], the Shindig RPC feature [45], easyXDM [46], the window

postMessage plugin [53], jsChannel[54] and Web intents [38] are all frameworks that extend

the described message-oriented systems to provide a remote procedure call model. Similarly,

SMash [30], the Shindig pubsub feature [45], OpenAjax Hub [55], open-app [56] and pmrpc [57,

58] frameworks provide a publish-subscribe communication model. Many of these frameworks

are also based on the postMessage API and fall back to other systems for older browsers.

Among these systems, easyXDM, jsChannel, Web intents and pmrpc are the most recently

developed and have several advantages over other systems, such as providing reliability and

discovery features.

Along with HTML5, other specifications also introduced new APIs for storing data which

enable shared-memory cross-context communication in a standardized way. The LocalStor-

age API [33] provides a simple structure of key-value pairs, the Web SQL database API

[34] provides an offline SQL database, while the Indexed Database API [47] provides a com-

promise between the simplicity and speed provided by the previous two specifications. All

of the mentioned specifications support communication only between contexts on the same

origin and are not yet implemented by all major browsers. An extension of the Web Stor-

age specification to enable cross-origin communication is implemented in the Cross Domain

Storage framework [48] inspired by the XAuth protocol implementation [59]. The framework

is based on a combination of the Web Storage same-origin shared-memory and cross-origin

postMessage API.

Web Workers were introduced in recent years and therefore a small number of systems

support communication with worker contexts. The Web Worker specification [8] defines an

API, almost exact to the postMessage API, for message-oriented communication between

window contexts and directly nested worker contexts, and between two directly nested worker

contexts. The jQuery Hive plugin [60] reduces the code overhead of communicating with

worker contexts and is still based on a message-oriented communication model. Lastly, the

previously mentioned Web SQL database APIs and Indexed Database API specifications also

support worker contexts in addition to being accessible from window context.

5 Discussion

In this section we discuss relevant aspects of the proposed framework and performed evalu-

ation. Based on the discussions, we give an aggregated view of the evaluated cross-context

communication ecosystem and propose several beneficial directions for future work.

First, both the framework and evaluation show that there are many relevant dimensions

to cross-context communication. However, we do not claim that the extracted dimensions

are completely orthogonal and therefore dependencies between dimensions may exist. For

example, a publish-subscribe communication model implies support for the multicast distri-

bution scheme and indirect naming. Although system evaluation and trend analysis would be

more succinct and clearer with orthogonal dimensions, we do not believe this is a significant

drawback.

However, we do propose that some dimensions be researched in more depth. The best



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 17

example is the definition of server-mediated communication frameworks of the type of system

dimension. Server-mediated communication frameworks, as currently defined, include any

system that enables data exchange outside the browser. The importance of these types of

systems is in their support for communication between contexts executing in remote browsers.

As hinted by the currently developing peer-to-peer API in the HTML Device specification [61],

this type of communication is becoming more important. However, the difficulty in system-

atizing of this subset of cross-context communication systems is in that it includes not only

systems developed specifically for cross-context communication but also any kind of service

outside the browser which can be used for data transfer. This, for example, includes APIs

for accessing the file system, cloud services for publish-subscribe messaging, such as PubNub

and PusherApp, and even e-mail and social-networking services like Twitter. Therefore, our

future work includes a deeper analysis of these types of systems to provide a finer and more

useful granularity of values for the type of system dimension.

The proposed framework does not yet address the possible requirements of a cross-context

communication system with regard to creating contexts with which it supports communica-

tion. For example, the easyXDM framework may be used to communicate with a context

only if the framework was used to create the context. This feature enables easier setup of

multi-context Web applications but also limits the usage of the system in Web applications

not under the control of the developer, for example iGoogle.

Furthermore, the framework does not address performance-relevant aspects of cross-context

communication systems, such as the size of libraries which need to be downloaded by the Web

application using the system and communication latency. As these aspects are becoming more

important for modern Web applications and especially Web applications optimized for mobile

devices, research in this field should take them into consideration.

Some dimensions common in operating systems have been left out of the framework. For

example, inter-process communication systems are differentiated based on their synchronicity,

denoting whether send and receive primitives block execution until the other party responds

(synchronous) or do not block execution (asynchronous). Although synchronous cross-context

communication may be implemented in Web browsers, this is exceedingly impractical due to

the asynchronous event-based execution model of browsers. All evaluated systems are based on

asynchronous communication and therefore the dimension has been left out of the framework.

Furthermore, as noted in the previous section, a complete systematization of the ecosystem

should include an evaluation of all existing cross-context communication systems across all

dimensions. Therefore, future work in this area should include an evaluation of the left out

security and browser support dimensions, as well as evaluating representative server-mediated

communication frameworks.

The evaluation of existing systems gives the following insights and possible areas for future

work. As shown on Figure 3 a), a substantial number of systems use server components for

initiation of communication. Second, as shown on Figure 3 b), only a small number of systems

supports worker contexts and even a smaller number of systems unify both window and worker

context communication.

Third, as shown on Figure 4 a), only one third of evaluated systems support high-level

communication models like remote procedure call and publish-subscribe. These communica-

tion models are often preferable over message-oriented and shared memory models since they



18 A Classification Framework for Web Browser Cross-Context Communication

Fig. 3. Aggregated evaluation results for Type of system, Window context support and Worker
context support dimensions.

require a smaller code overhead for achieving application goals. Fourth, as shown on Fig-

ure 4 b), a small number of systems unify and expose more than one communication model.

As a result, several cross-context communication systems must often be used to achieve the

required cross-context interaction, thus increasing application-level complexity.

Fifth, as shown on Figure 5 a), although security features of cross-communication systems

have been the most researched, the authorization aspect of security is still significantly under-

developed. As concluded in [32], more expressive mechanisms for authorization, such as the

whitelist access control model, should be integral parts of these systems, for both senders and

receivers. Lastly, as shown on Figure 5 b), context discovery is addressed by only two of the

evaluated systems, while only seven of the evaluated systems support some form of reliable

communication.

6 Conclusion

Web browsers are evolving at a rapid pace to support execution of modern Rich Internet

Applications (RIAs). In many ways, modern Web browsers are offering the same execution

services as operating systems: application execution, reliability, security, resource manage-

ment and others. For example, the recently announced ChromeOS is an operating system

almost completely based on the Chrome Web browser.

Like multi-process desktop applications executing on operating systems, modern Web ap-

plications are built from many browser execution contexts. Examples of multi-context Web

applications include widget-based applications (personal learning environments) [7], back-

ground processing [8] and even platforms for secure authentication [59]. Therefore, a funda-

mental requirement for Web browsers is adequate support for cross-context communication,

a field which has historically been in disorder due to browser evolution.

Our systematization of cross-context communication is based on a classification frame-

work that establishes relevant properties of cross-context communication systems. We show



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 19

Fig. 4. Aggregated evaluation results for Communication model dimension.

Fig. 5. Aggregated evaluation results for Authorization of sender, Authorization of receiver, Dis-

covery and Reliability dimensions.



20 A Classification Framework for Web Browser Cross-Context Communication

the usefulness of such a framework through a broad analysis of many existing cross-context

communication systems. The usefulness of the analysis is twofold. First, it enables a thought-

ful understanding of each system and comparison to other systems. Second, the analysis offers

insights into many areas for both future research and development of new cross-context com-

munication systems in order to support many new requirements of RIAs. As research results

concerning widget portals [62, 63, 6] and several cross-context communication systems [32]

suggest, we believe that future cross-context communication systems should be guided by the

principle of economy of liabilities [32]. In other words, cross-context communication systems

should hide the complexity of cross-context communication by providing high-level function-

alities, such as multiple communication models, context discovery, unified window context

and worker context communication and ease of specifying authorization policies. Further-

more, as high performance is an important requirement of Web applications, further research

should be focused in this direction. Consequently, we have started with the development of a

framework for testing run-time performance of cross-context communication systems. There-

fore, the next revision of our framework will at least include a dimension which reflects the

size of the cross-context communication system’s libraries required in the browser and the

empirically measured latency when transferring data between two contexts.

Acknowledgements

The authors acknowledge the support of the Ministry of Science, Education, and Sports

of the Republic of Croatia through the Computing Environments for Ubiquitous Distributed

Systems (036-0362980-1921) research project. Furthermore, the authors thank Sinisa Srbljic,

Dejan Skvorc, Miroslav Popovic, Klemo Vladimir, Marin Silic, Goran Delac, Jakov Krolo

and Zvonimir Pavlic from School of Electrical Engineering and Computing, University of

Zagreb. Lastly, the authors thank the following people for their support in research of cross-

context communication in Web browsers: Oywind Sean Kinsey, developer of the easyXDM

cross-context communication framework; Tobias Nelkner and Philipp Rustemeier, members

of the MATURE project; Scott Wilson, contributor to the Apache Wookie project; Bodo von

der Heiden, member of the Responsive Open Learning Environments (ROLE) project; and

Fridolin Wild from the Knowledge Media Institute, Open University, UK.

References

1. Y. Ding, L. Xu and D. Embley (2009), A Model of World Wide Web Evolution, Proceedings of the
WebSci’09: Society On-Line, Athens, Greece, March 2009, http://www.websci09.org/proceedings/
(in press)

2. P. Fraternali, G. Rossi and F. Snchez-Figueroa (2010), Rich Internet Applications, IEEE Internet
Computing, Vol.14, No.3, May-June 2010, pp. 9-12

3. J. Yu, B. Benatallah, F. Casati and F. Daniel (2008), Understanding Mashup Development, IEEE
Internet Computing, Vol.12, No.5, Sept.-Oct. 2008, pp. 44-52

4. S. Aghaee and C. Pautasso (), Mashup Development with HTML5, Proceedings of the 3rd and 4th
International Workshop on Web APIs and Services Mashups, Ayia Napa, Cyprus, December 2010

5. O. Diaz, A. Irastorza, J. Sanchez Cuadrado and L. M. Alonso (2008), From page-centric to portlet-
centric Web development: Easing the transition using MDD, Information and Software Technology
Journal, Vol. 50, No. 12, November 2008, pp. 1210-1231

6. D. Renzel, C. Hobelt, D. Dahrendorf, M. Friedrich, F. Modritscher, K. Verbert, S. Govaerts, M.



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 21

Palmer and E. Bogdanov (2010), Collaborative Development of a PLE for Language Learning,
International Journal of Emerging Technologies in Learning, Vol. 5, No. 1, Jan. 2010, pp. 31-40

7. S. Srbljic, D. Skvorc and D. Skrobo (2009), Widget-Oriented Consumer Programming, AU-
TOMATIKA: Journal for Control, Measurement, Electronics, Computing and Communications,
Vol. 50, No. 3-4, Dec. 2009, pp. 252-264

8. I. Hickson (Editor), Web Workers. W3C draft (accessed on Sept. 8, 2010),
http://dev.w3.org/html5/workers/

9. A. Wright (2009), Ready for a Web OS?, In Communications of the ACM, Vol. 52, No. 12, Dec.
2009, pp. 16-17

10. M. Zawelski, Browser security handbook, (accessed on Sept. 8, 2010),
http://code.google.com/p/browsersec/wiki/Main

11. K. Singh, A. Moshchuk, H. J. Wang and W. Lee (2010), On the Incoherencies in Web Browser
Access Control Policies, IEEE Symposium on Security and Privacy, May 2010, Oakland, California,
USA, pp. 463-478

12. H. Schneider (2008), Communication between browser windows, United States patent, patent num-
ber 7426699 (issued on Sept. 16, 2008)

13. C. Jackson and H. J. Wang (2007), Subspace: Secure CrossDomain Communication for Web
Mashups, Proceedings of the 16th international conference on World Wide Web, Banff, Alberta,
Canada, 2007, pp. 611-620

14. I. Hickson (Editor), HTML5: A vocabulary and associated APIs for HTML and XHTML, W3C
draft (accessed on Sept. 8, 2010), http://www.w3.org/TR/html5/

15. Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D. Schwabe, M. Gaedke and B. White (2002),
Web Engineering, Journal of Web Engineering, Vol. 1, No. 1, Oct. 2002, pp. 3-17

16. I. Jacobs, N. Walsh (2004), Architecture of the World Wide Web, Volume One, W3C Recommen-
dation, (accessed on Sept. 8, 2010), http://www.w3.org/TR/webarch/

17. D. Akhawe, A. Barth, P. E. Lam, J. Mitchell and D. Song (2010), Towards a Formal Foundation of
Web Security, Proceedings of the 23rd IEEE Computer Security Foundations Symposium (2010),
pp. 290-304

18. C. Reis (2009), Web Browsers as Operating Systems: Supporting Robust and Secure Web Programs,
Doctoral Thesis (June, 2009), University of Washington

19. C. Reis, S. D. Gribble and H. M. Levy (2007), Architectural principles for safe web programs,
Proceedings of the Sixth Workshop on Hot Topics in Networks, Atlanta, Georgia, November 2007

20. E. Isaksson and M. Palmer (2010), Usability and Inter-widget Communication in PLEs, Pro-
ceedings of the 3rd Workshop on Mashup Personal Learning Environments, Barcelona, Spain,
September 2010

21. B. Hoisl, H. Drachsler and C. Waglechner (2010), User-tailored Inter-Widget Communication -
Extending the Shared Data Interface for the Apache Wookie Engine, Proceedings of the 13th Inter-
national Conference on Interactive Computer aided Learning, September 2010, Hasselt, Belgium

22. A. Barth, C. Jackson and I. Hickson, The Web Origin Concept, IETF Internet-Draft (accessed on
Sept. 8, 2010), http://tools.ietf.org/id/draft-abarth-origin

23. S. Sire, A. Vagner, M. Paquier and J. Bogaerts (2009), A Messaging API for Inter-Widgets Com-
munication, Proceedings of the 18th International World Wide Web Conference, Madrid, Spain,
April 2009, pp. 1115-1116

24. A. Barth, HTTP State Management Mechanism, IETF Internet-Draft (accessed on Sept. 8, 2010),
http://tools.ietf.org/id/draft-ietf-httpstate-cookie

25. H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury and H. Venter (2009), The Multi-
Principal OS Construction of the Gazelle Web Browser, Microsoft Research Technical Report
(2009), http://research.microsoft.com/pubs/79655/gazelle.pdf

26. A. Barth, C. Jackson and J. C. Mitchell (2009), Securing Frame Communication in Browsers,
Communications of the ACM, Vol. 52, No. 6, June 2009, pp. 83-91

27. D. Crockford, The Module Tag: A Proposed Solution to the Mashup Security Problem (accessed
on Sept. 8, 2010), http://www.json.org/module.html



22 A Classification Framework for Web Browser Cross-Context Communication

28. J. Howell, C. Jackson, H. J. Wang and X. Fan (2007), MashupOS: operating system abstractions
for client mashups, Proceedings of the 11th USENIX workshop on Hot topics in operating systems,
San Diego, California, USA, May 2007, pp. 1-7

29. A. Barth, C. Jackson and W. Li (2009), Attacks on JavaScript Mashup Communication, Proceed-
ings of the Web 2.0 Security and Privacy Workshop (2009)

30. F. De Keukelaere, S. Bhola, M. Steiner, S. Chari and S. Yoshihama (2008), SMash: Secure Com-
ponent Model for Cross-Domain Mashups on Unmodied Browsers, Proceedings of the 17th Inter-
national World Wide Web Conference, Beijing, China, April 2008

31. S. Bhola, S. Chari and M. Steiner (2007), Security for web 2.0 application scenarios: Exposures,
issues and challenges, Proceedings of the IEEE Web 2.0 Security and Privacy Workshop, 2007

32. S. Hanna, R. Shin, D. Akhawe, P. Saxena, A. Boehm and D. Song (2010), The Emperor’s New
API: On the (In)Secure Usage of New Client Side Primitives, Proceedings of the IEEE Web 2.0
Security and Privacy Workshop, May 2010

33. I. Hickson (Editor), Web Storage, W3C draft (accessed on Sept. 8, 2010),
http://dev.w3.org/html5/webstorage/

34. I. Hickson (Editor), Web SQL Database, W3C draft (accessed on Sept. 8, 2010),
http://dev.w3.org/html5/webdatabase/

35. A. Barth, C. Jackson, C. Reis and the Google Chrome Team (2008), The Secu-
rity Architecture of the Chromium Browser, Stanford University, Technical report, 2008,
http://seclab.stanford.edu/websec/chromium/

36. A. Silberschatz, P. B. Galvin and G. Gagne (2008), Operating System Concepts; 8th edition, Wiley,
2008, ISBN: 978-0470128725

37. M. Shaw and D. Garlan (1996), Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, April 1996, ISBN 978-0131829572

38. P. Kinlan (2010), Web intents, (accessed on Dec. 8, 2010), http://webintents.appspot.com/
39. E. Mullins, Local Connection Actionscript Communicate between seperate Flash files, (accessed

on Sept. 8, 2010), http://blog.circlecube.com/2008/03/tutorial/local-connection-actionscript-
communicate-between-seperate-flash-files-tutorial/

40. A. Ghoda (2010), Introducing Silverlight 4, Apress, July 2010, ISBN:9781430229919
41. G. Clayton, V. Chen, A. Athsani and R. Martinez (2009), System and method of inter-widget

communication, United States patent, patent number US 2009/0070409 A1 (issued on March 12,
2009)

42. G. Corvera, G. Moore, D. Thorpe and K. Kato (2009), Inter-frame messaging between different
domains, United States patent, patent number 20090328063 (issued on December 31, 2009)

43. B. C. Appleton, S. Meschkat, T. Tran, A. Sah, Z. Wang, A. P. Schuck and J. R. Macgill (2010),
System using router in a web browser for inter-domain communication, United States patent,
patent number 7809785 (issued on October 5 2010)

44. K. Zyp (2008), window.name transport, (accessed on Sept. 8, 2010),
http://www.sitepen.com/blog/2008/07/22/ windowname-transport/

45. Apache Shindig project, (accessed on Sept. 8, 2010), http://shindig.apache.org/
46. S. Kinsey, easyXDM framework, (accessed on Sept. 8, 2010), http://easyxdm.net/
47. N. Mehta, J. Sicking, E. Graff and A. Popescu (Editors), Web Database API, W3C draft (accessed

on Sept. 8, 2010), http://www.w3.org/TR/IndexedDB/
48. N. C. Zakas (2010), Learning from XAuth: Cross-domain localStorage, (accessed on Sept. 8, 2010),

http://www.nczonline.net/blog/2010/09/07/ learning-from-xauth-cross-domain-localstorage/
49. Google Closure Library, (accessed on Sept. 8, 2010), http://code.google.com/p/closure-library/
50. XSSinterface JavaScript library, (accessed on Sept. 8, 2010),

http://code.google.com/p/xssinterface/
51. jQuery postMessage plugin, (accessed on Sept. 8, 2010), http://github.com/cowboy/jquery-

postmessage
52. S. Zarandioon, Y. Danfeng and V. Ganapathy (2008), OMOS: A Framework for Secure Com-

munication in Mashup Applications, Proceedings of the Annual Computer Security Applications



Ivan Zuzak, Marko Ivankovic, Ivan Budiselic 23

Conference, Anaheim, California, USA, December 2008, pp. 355-364
53. Window postMessage plugin, (accessed on Sept. 8, 2010), http://postmessage.freebaseapps.com/
54. L. Hilaiel (2010), jsChannel, (accessed on Dec. 8, 2010), https://github.com/mozilla/jschannel
55. OpenAjax Hub 2.0, (accessed on Sept. 8, 2010), http://www.openajax.org/member/

wiki/OpenAjax Hub 2.0 Specification
56. Open Application JavaScript Library, (accessed on Sept. 8, 2010), http://code.google.com/p/open-

app/
57. I. Zuzak, M. Ivankovic and I. Budiselic Cross-context Web browser communication withunified

communication models and context types, Accepted for publication: 34th international convention
on information and communication technology, electronics and microelectronics, Opatija, Croatia,
May 2011

58. I. Zuzak and M. Ivankovic, Pmrpc library, (accessed on Sept. 8, 2010),
http://code.google.com/p/pmrpc/

59. Extended authentication (XAuth), (accessed on Sept. 8, 2010), http://xauth.org/info/
60. jQuery.Hive plugin, (accessed on Sept. 8, 2010), http://github.com/rwldrn/jquery-hive
61. I. Hickson (Editor), HTML Device, An addition to HTML – Peer-to-peer connections, W3C

Editor’s draft (accessed on Sept. 8, 2010), http://dev.w3.org/html5/html-device/#peer-to-peer-
connections

62. S. Sire and A. Vagner (2008), Increasing Widgets Interoperability at the Portal Level, Proceedings
of the First International Workshop on Mashup Personal Learning Environments, Maastricht, The
Netherlands, Sept. 2008, pp. 33-36

63. Sire, S., Bogdanov, E., Palmr, M., and Gillet, D. 2009. Towards Collaborative Portable Web
Spaces. In Proceedings of the Second Workshop on Mash-Up Personal Learning Environments
(2009).


