
Formal Modeling of RESTful Systems Using
Finite-State Machines

Ivan Zuzak, Ivan Budiselic, and Goran Delac

School of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia

{izuzak, ibudiselic, gdelach}@gmail.com

Abstract. Representational State Transfer (REST), as an architectural
style for distributed hypermedia systems, enables scalable operation of
the World Wide Web (WWW) and is the foundation for its future evolu-
tion. However, although described over 10 years ago, no comprehensive
formal model for representing RESTful systems exists. The lack of a for-
mal model has hindered understanding of the REST architectural style
and the WWW architecture, consequently limiting Web engineering ad-
vancement. In this paper we present a model of RESTful systems based
on a finite-state machine formalism. We show that the model enables in-
tuitive formalization of many REST’s constraints, including uniform in-
terface, stateless client-server operation, and code-on-demand execution.
We describe the model’s mapping to a system-level view of operation
and apply the model to an example Web application. Finally, we outline
benefits of the model, ranging from better understanding of REST to
designing frameworks for RESTful system development.

Keywords: representational state transfer, World Wide Web, software
architectural styles, formal model, finite-state machines, hypermedia

1 Introduction

One of the main reasons for the wide adoption of the World Wide Web (WWW)
as a global information system has been its ability to scale and remain reliable
with the rapid growth in the number of its users and applications. Enabling this
growth is an architecture [1] designed just for the purpose of developing large-
scale distributed hypermedia systems such as the WWW. The foundation of this
architecture is a set of software design principles named the Representational
State Transfer architectural style (REST) [2]. In a way, REST describes how a
Web application should behave in order to maximize beneficial properties, such
as simplicity, evolvability, and performance.

From its introduction in year 2000., REST has not only guided many incre-
mental changes in WWW’s continuous evolution, such as the recently standard-
ized HTTP PATCH method [3], but has also been guiding the development of
its new dimensions in order to preserve its desirable properties. These efforts
include the expansion of the WWW with higher-level applications, interlinked

data, physical devices and real-time access, through mashups [7], the Seman-
tic Web [5], Web of Things [4] and the Real-Time Web [6]. However, as the
WWW grows in functionality, it also grows in complexity and is consequently
becoming harder to understand and explain at the architectural level. Therefore,
understanding REST is essential for engineering the WWW and its future.

However, although defined over 10 years ago, REST’s architectural principles
have only been semi-formally described using diagrams, tabular techniques and
natural language descriptions. Furthermore, although formal models of hyperme-
dia systems in general do exist [9], no such model covers fundamental principles
of REST and most techniques are used to model the WWW which includes
many unRESTful properties. In result, no formalism for modeling RESTful sys-
tems exists today. This lack of formal explanation has increasingly been causing
negative effects, such as misunderstanding of REST concepts, misuse of termi-
nology [10] and ignorance of benefits of the REST style. For example, common
misunderstandings include the overload in meaning of the word state, such as
state, application state, resource state and session state [13], and identifying
functionality of REST user agents with Web browsers [14].

In result, WWW researchers and engineers experience difficulty in concisely
explaining both small-scale and large-scale WWW patterns or requirements,
such as defining Web application interaction [11] and defining future WWW
architectural goals [12]. Furthermore, development of systems which adhere to
the REST style is difficult due to a lack of software frameworks which guide
their implementation [15]. This is especially true for developing machine-driven
RESTful clients and their application in machine-to-machine RESTful interac-
tion and service composition [8]. We believe this to be a direct consequence of
the absence of formal models which are used as the practical encoding of general
architectural principles and serve as the foundation for the software development
process in such frameworks.

In this paper we present a finite-state machine (FSM) [16] formalism for
modeling RESTful systems, with the primary motivation of contributing to the
understanding of the REST style. Our choice of using a FSM formalism was
inspired by The Rule of Least Power [17] which originally suggests that the least
powerful language suitable for expressing constraints or solving a problem should
be chosen. Consequently, one of our goals was to explore the possible limits of
the FSM formalism for this specific purpose in order to suggest the use of more
a powerful model. Furthermore, one of the core principles of the REST style,
that resource representation transfers are used for transitioning agents from one
state to another, suggest the usage of a state transition system formalism.

Our model is based on the nondeterministic finite-state machine formalism
with epsilon transitions (ε-NFA). We first explain the mapping of the model’s ab-
stract elements to those of a RESTful system. In order to illustrate model usage,
we introduce an example Web application and present its ε-NFA model. Next,
we explain how each of REST’s style constraints map to the model, including
uniform interface, stateless client-server operation, and code-on-demand execu-
tion. We show that the transition function of the ε-NFA enables formalization

of the transformation of the system’s application state, following the hypermedia
as the engine of application state principle. Furthermore, we show that nonde-
termistic transitions of the model enable formalization of the temporally-varying
mapping of resources to representations and that ε-transitions enable formaliza-
tion of code-on-demand execution. The presented model naturally translates to
the client-centric view of RESTful system operation with the client storing ap-
plication state, issuing resource manipulation requests and integrating responses
into application state, while the server performs request processing.

The remainder of the paper is organized as follows. In Section 2, we give an
overview of related work, focusing on approaches for formalization of RESTful
systems, hypermedia systems and Web applications. Section 3 defines our finite-
state machine formalism for modeling RESTful systems and presents the model
of an example Web application. In Section 4 we conclude the paper, discuss the
limitations of the presented model and give directions for future work.

2 Related Work

This Section gives an overview of existing approaches for modeling RESTful
systems with the goal of examining the degree of completeness in which REST
principles are covered by each model. We first give an overview of related work
focused on REST and similar styles and then of related work focused on mod-
eling Web applications and hypermedia systems in general. In summary, our
analysis shows several issues with existing formal and semi-formal models that
motivate our research. First, most models are not focused on REST, rather on
hypermedia applications in general or Web applications, and thus do not in-
clude many of REST’s principles. Second, most models do not offer an explicit
mapping from REST’s principles to the chosen formalism, and in general do not
use the terminology originally proposed for REST. Third, most models address
only REST’s static properties or do not offer a mapping of REST principles to
a system-level view of operation dynamics. Fourth, some principles of REST are
rarely included in models, such as the temporally-varying mapping of resources
to representations, code-on-demand execution and steady application states.

In [18], the authors present Alfa, a framework for characterization of archi-
tectural styles, based on composing a small set of architectural primitives. The
authors use Alfa to describe many architectural styles, including a subset of
REST, the layered-client-code-on-demand-cache-stateless-server (LCCOD$SS)
style. However, this style does not include the uniform interface constraint, one
of the most important and distinct principles of REST, while its model does not
explain key REST concepts, such as resources, representations and media types.

In [19] the authors present a definition of RESTful semantic Web Services
using a process calculus formalism. In this model, a RESTful system is described
as a set of processes, representing origin servers and user agents, which exchange
request and response messages over uniquely identified channels. This approach
is very promising as it allows that channel names exchanged between processes
be used to model the exchange of messages containing resource identifiers. This

property of the model enables formalization of the REST constraint of using
hypermedia links as the engine of application state. We encourage further work
on using process algebras for modeling RESTful systems which would include a
mapping of resources, representations, media types, steady and transition states
to such a model together with a generalization of the model which would not be
bound to standard HTTP methods as it currently is.

In [20] the authors present a promising formal model for specifying RESTful
execution of processes specified by Service nets, a specific class of Petri nets
that include value passing. The main advantage of the model is its integration of
hypermedia-driven application flow while its main use is in modeling composition
of RESTful processes. However, the model is not explicit on where application
state is stored and does not explain its transformation in response to initial
fetches of resource representations which occur at the beginning of an application
flow. Furthermore, the model introduces a notion of static and dynamic ports,
metaphors for static and temporary resources, which is not RESTful since clients
never know and do not need to know if a resource is static or temporary.

In [21] the authors present the Resource Linking Language, an XML-based
language for describing interlinked REST resources and consequently the ser-
vice that can be accessed by interacting with those resources. The language is
based on a RESTful service description metamodel, formalized as a UML class
diagram, and which incorporates many REST’s concepts, such as resources, rep-
resentations, media types and links. However, the static metamodel does not
explicitly express the important dynamic properties of REST, such as the appli-
cation state contained on the client side and the effects of the code-on-demand
constraint, and does not map REST’s concepts to a client-server architecture.

In [22], an agent-based model of RESTful applications is presented. In the
model, an agent represents the client side of the application while the environ-
ment represents the server side. The agent has several pools of predefined logic,
including application, action and protocol logic, formalized as a hierarchical state
machine which drives the agent’s action selection. Although explaining high-level
dynamics of a RESTful system, the model is more descriptive than formal, not
providing an explicit mapping of many REST’s principles to the model, includ-
ing code-on-demand execution, resource representations and temporally-varying
mapping of resources to representations.

In [23], the authors present a broad overview of modeling methods for Web
application verification and testing, using a categorization of criteria for clas-
sifying models of Web application. Although some criteria may be regarded as
reflections of REST’s principles, such as the dynamic navigation criterion which
asserts the possibility of modeling servers that may nondeterministically return
responses for the same requests, this work is focused on Web applications only
and most principles of REST were not considered. For example, in [25], the au-
thors introduce a finite-state machine behavioral modeling approach for hyper-
media Web applications. The model is based on presenting Web pages as states
and links as transitions in a FSM. Furthermore, the authors define multiple types
of pages and transitions in order to model activity-initiated transitions and au-

tomatic transitions. However, the model is based on a deterministic FSM and
does not explain the temporally-varying mapping of resources to representations
in RESTful systems. Furthermore, the model is based on using only “clickable
links” for transitions, i.e. only navigation is used for changing application state,
which is an incomplete definition of transitions in RESTful systems.

In [9], the authors give a broad systematization of formal and semi-formal
reference models for hypermedia systems and a comparison of hypermedia en-
gineering methodologies. Hypermedia reference models capture important ab-
stractions found in hypermedia applications and describe the basic concepts
of these systems, such as the node/link structure. Semi-formal models include
the Amsterdam Hypermedia model while formal models include the Trellis and
Dexter reference models. However, although these models describe the mecha-
nisms by which the links and nodes in the hypermedia network are related, these
do not include many principles, concepts and terminology of RESTful systems.
For example, the Dexter reference model uses components and instances, while
REST uses resources, representations and application state. Furthermore, these
models do not offer a dynamic operational system-level view which maps system
components to clients, servers and intermediaries.

In [24] the authors present an automata-based model of hyperdocuments
with the goal of verifying trace-based properties by model checking. The model
is focused on simple hyperlink-based connectedness of hypertext documents for
the Trellis hypermedia system, which does not include important properties
of RESTful systems, such as the uniform interface constraint. However, two
interesting ideas are presented. First, the underlying model upon which a link
automaton is constructed is based on place/transition nets in order to allow
modeling of parallel execution of hyperdocuments. Second, the authors present
a temporal logic for model checking link automatons.

3 A Finite-State Machine Model of RESTful Systems

Finite-state machines (FSMs) are a mathematical formalism for describing pro-
cesses with a finite number of possible states and sequential state transitions.
Although components of a RESTful system may be viewed as separate agents,
each driven by a self-contained FSM, we model the operation of the complete
system, often called an application, as a single FSM. For formalizing RESTful
systems, we use a nondeterministic finite-state machine with ε-transitions (ε-
NFA), an extension of the basic deterministic FSM model. Our model is focused
more on explaining the operation of RESTful systems and less on explaining
their static properties. The central part of this view is the application state of a
RESTful system, its definition, transformation and relation to other concepts.

In the following subsections we first give an overview of the model, formal-
izing elements of the ε-NFA in context of RESTful systems. Second, in order
to illustrate the usage of the model, we introduce an example Web application
and present its ε-NFA formalization. Next, we describe the model in more de-
tail by mapping style constraints of REST to the presented model, including

client-server, stateless, code on demand and uniform interface styles. The pre-
sented model does not explicitly formalize the layered and cacheable constraints
of REST since these are not essential for understanding the operation of a system
from a functional perspective.

3.1 Model Overview

A nondeterministic finite-state machine with epsilon transitions (ε-NFA) is a
tuple (S,Σ, s0, δ, F) where S is a finite, non-empty set of states, Σ is a finite, non-
empty set of symbols representing the input alphabet, s0 ∈ S is the initial state of
the ε-NFA, δ is the state transition function δ : S×(Σ∪{ε})→ P(S), where P(S)
is the power set of S, and F ⊆ S is the set of accepting states. A system-level
perspective of ε-NFA operation is shown in Fig. 1. The Input Symbol Generator
module generates an input symbol based on internal rules or environment state
(1). Since the generator is not part of the ε-NFA’s formal model but is required
to properly model its operation, we define that the generator has access to the
system’s state stored in the Current State module. The Transition Function
accepts the generated input symbol and the current state (2), determines the
next state and stores it in the Current State module (3). The described cycle
is then repeated. Since the ε-NFA is nondeterministic, formally the Transition
Function module returns a set of states, for which the practical meaning is that
the system may be in any single state from that set. If at some point at least
one state stored in the Current State module is marked as accepting, it is said
that the ε-NFA accepts the sequence of input symbols read up to that point.
Furthermore, since the ε-NFA includes ε-transitions, the Transition Function
does not need to read an input symbol in order to perform some transitions.

Fig. 1. System-level view of ε-NFA operation

We map a RESTful system [2] to the ε-NFA formal model as follows. Let
ResIDs be a finite set of identifiers of system resources, let Metas be a finite
set of metadata key-value pairs, let LTypes be a finite set of link types and
let LRels be a finite set of link relations. Furthermore, let Links be the finite
set of hypermedia links, each defined by a resource identifier, link type and link
relation Links ⊆ ResIDs× LTypes× LRels and let MTypes be a finite set of
media types which determine the set of hypermedia links present in a representa-
tion MTypes = {MType : Reprs→ P(Links)}. Finally, let Reprs be the finite

set of resource representations, each consisting of resource metadata and data
Reprs ⊆ data× P(Metas) where one metadata element defines the media type
of the representation. The set of states S of the ε-NFA represents the applica-
tion states of the system, S = AppStates, where an application state is defined
as a non-empty, ordered set of representations, AppStates ⊆ P(Reprs) − {}.
Furthermore, the initial state s0 of the ε-NFA represents the initial appli-
cation state at system startup. Finally, let Steadys be the subset of application
states, Steadys ⊆ AppStates, for which it holds true that representations of all
embeddable resources linked to from the first representation in the application
state are also present in the application state. The set of accepting states F
of the ε-NFA represents the steady application states, F = Steadys.

Next, let Ops be a finite set of resource manipulation methods, and let Reqs
be the finite set of valid resource manipulation requests Reqs ⊆ Ops×ResIDs×
Reprs. The set of input symbols Σ of the ε-NFA represents requests Reqs
and their corresponding link types LTypes for manipulating resources, Σ ⊆
Reqs× LTypes. Furthermore, let Resrcs be a finite set of resources, mappings
from a resource identifier to a representation Resrcs : {Resrc : ResIDs →
Reprs}, and Resps be a finite set of resource manipulation responses Resps ⊆
ResIds × Reprs. The transition function δ of the ε-NFA represents the
translation of input symbols into requests, processing of requests into responses
and integration of response representations into the next application state, δ :
AppStates× (Reqs× LTypes)→ P(AppStates). Furthermore, since the ε-NFA
includes ε-transitions, for some application states the transition function may
change the application state without reading an input symbol, i.e. without the
system generating a resource manipulation request.

3.2 Example Web Application

In order to illustrate concepts presented in this paper, we introduce a weather
forecast Web application. The resources comprising the Web application are
shown in Fig. 2. The base URI of the application is http://weather.example.
com and we identify its resources using relative addressing. The main Web page,
located at /main, contains an <a> link to the details Web page and a <script>

element pointing to a JavaScript script located at /script. The script period-
ically highlights the <a> link to the details page by changing the color from
blue to red. The details Web page, located at /details, contains an tag
pointing either to /cloudy or to /sunny depending on the current weather. Fur-
thermore, the details page contains a <script> element with inline JavaScript
code which uses XmlHttpRequest for periodically fetching the current temper-
ature from /temp and displaying it in the Web page. Finally, the details page
contains an <a> link pointing to the main page. The media types of the resources
are text/html for /main and /details, image/png for the /sunny and /cloudy,
and text/javascript and text/plain for /script and /temp, respectively. We
assume that the user of the application is using a modern Web browser.

The ε-NFA model of the example Web application is shown in Fig. 3, with
numbers denoting states and letters denoting input symbols. The initial state

Fig. 2. Example Web application

0 contains a representation with an <a> link to the /main page. After a GET
request is issued (a), the server returns a response containing the representation
of the /main page which becomes the current state. State 1 is not steady since
the representation contains a <script> link to /script which must be fetched.
A GET request is issued to fetch the script (b) and the application then en-
ters the steady state 2. Because the script periodically changes the color of the
link pointing to the /details page, the application’s steady state may change
between states 2 and 3 without issuing a request (ε).

Fig. 3. ε-NFA model of example Web application

When the user follows the link to the /details page (c), the application
makes a nondeterministic transition to transient states 4 and 5 because the
representation contains an link pointing either to /sunny or /cloudy.
After fetching the linked image using a GET request (d or e), the application
enters a steady state 6 or 7. Furthermore, the representation of the details page
contains an inline script which periodically makes a GET request for the current
temperature (f). Since the returned temperature may have two possible values

(25C or 30C), the application nondeterministically enters states 8 and 9 if the
weather was cloudy, or states 10 or 11 if the weather was sunny. The script
then inserts the temperature into the page without issuing requests (ε), moving
the application into states 12 and 13, or 14 and 15, depending on the weather.
Because the details page contains a link to the main page, the user may at any
time follow the link (a) and bring the application back to state 1.

3.3 Client-Server Style and Stateless Style Constraints

Figure 4 shows the system-level view of a RESTful system as a set of modules,
their mapping to the elements of the ε-NFA and distribution between client and
server components. Because client-server interaction in RESTful systems must be
stateless, the Application State module which stores the current application state
is located on the client. This is also true for modules that generate input symbols:
the Media Type Processor, Application-level Logic and Hypermedia-level Logic.
However, the transition function is divided between the client and server in order
to satisfy the client-centric description of RESTful system operation in which
the server is responsible only for mapping from requests to responses. Therefore,
the Request Preprocessor, State Integrator and Code-on-demand Engine reside
on the client, and only the Request Processor on the server.

Fig. 4. Mapping of client-server and stateless REST constraints to the ε-NFA model

The interaction of the system’s modules is defined as follows. The resource
representations comprising the current application state are read by the Me-

dia Type Processor (1) in order to determine the set of available hypermedia
links. For example, the /main page of the example Web application has the
text/html media type which enables that the <a> link to the /details page
and <script> link to the /script script be recognized. The set of links and ap-
plication state are passed to the Application-level Logic and Hypermedia-level
Logic (2) so that one of the links may be chosen as the basis for the next in-
put symbol. Hypermedia-level Logic is responsible for generating input symbols
which guide the system to a steady state. Because steady states are determined
exclusively from the media types of the representations in the current applica-
tion state, Hypermedia-level Logic functions independently of Application-level
Logic. On the other hand, Application-level Logic is responsible for generating
input symbols based on application-specific goals, which are derived either from
user input or from application-specific rules encoded in the module. For exam-
ple, after the /main page has been fetched, two links may be followed, <script>
for embedding the /script script and <a> for navigating to the /details page.
The former link would be selected by Hypermedia-level Logic for downloading
the script, while the latter link would be selected by Application-level Logic, but
only in response to the user clicking on the link.

The input symbol generated by either of these modules consists of a resource
manipulation request and the link type of the chosen link (3). The Request
Preprocessor stores and removes the link type of the input symbol and adds a
request identifier to the request before forwarding it to the Request Processor
on the server (4). The server’s response therefore contains the request identifier
and a representation of the identified resource. Although request identifiers are
a conceptual requirement for coupling responses with requests, they are not
currently used on the Web since requests and responses are related through the
TCP connection by which they are sent and received. The State Integrator uses
the link type connected with the request, the corresponding server response and
the current application state (5) to synthesize the next state (6). For example, if
the /main page was fetched and the /script script was fetched afterwards via
the <script> link, the script representation would be added to the application
state. On the other hand, if the /details page was fetched afterwards via the
<a> link, the received representation would replace the existing application state.

Finally, if the resource representation is an executable script, the integrator
passes the script to the Code-on-demand engine for execution (7). The script
may then examine and change the current application state (8) (9) without
issuing requests to the server. For example, after the /script script is fetched
and executed using a JavaScript engine, it periodically modifies the application
state by changing the color of a link in the representation of the /main page.

3.4 Uniform Interface Style Constraint

REST is defined by four uniform interface constraints: identification of resources,
manipulation of resources through representations, self-descriptive messages, and
hypermedia as the engine of application state. In this section we formalize these
constraints in the context of our model. Resource identification is supported in

the model through resource identifiers which are used explicitly in input symbols
and application states, where an input symbol consists of a resource manipula-
tion request and link type, where the request contains a resource identifier, a
method and a representation. For example, an input symbol IStoDetails for nav-
igating to /details in the Web application example could be represented as:

IStoDetails = (Request : (Method : “GET”, ResourceId : “/details”,

Representation : “”), LinkType = “ < a > ”) ,

and the application state ASmain of a completely loaded /main page as:

ASmain = [(metadata : “...”, data : “/maincontents”),

(metadata : “...”, data : “/scriptcontents”)] .

Due to lack of space, we do not include full listings of representation data and
metadata. On the Web, metadata in general consists of HTTP headers, while
the data is the body of HTTP message.

Manipulation of resources through representations is supported in the model
through explicit usage of representations in input symbols and application state.
One of REST’s foundations is the temporally-varying mapping of resources to
representations, which is supported through the nondeterminism of the transi-
tion function. For example, because the /details page contains an link
to either /cloudy or /sunny, the navigation from /main to /details in the
example Web application could be represented with the following transition:

δ(ASmain, IStoDetails) = {ASdetailsCloudy, ASdetailsSunny} , where

ASdetailsCloudy = [(metadata : [mediaType : “text/html”],

data : “/details content with link to /cloudy”)] ,

ASdetailsSunny = [(metadata : [mediaType : “text/html”],

data : “/details content with link to /sunny”)] .

The self-descriptive messages style constraint is supported in the model
through stateless interaction, the limitation of using finite sets for system meth-
ods, media types, link types and link relations, and explicitly using these elements
in the input symbols and application state. For example, the IStoDetails input
symbol shown above has a link type of <a> while the representations in states
ASdetailsCloudy and ASdetailsSunny are of the text/html media type.

Hypermedia as the engine of application state is supported in the model
through the transition function which advances the system from one state to
another. Specifically, the output of the transition function should be defined
only for pairs of states and input symbols for which the input symbol may be
derived from the current state. In other words, the current state must contain a
hypermedia link used to generate the next input symbol’s link type and resource

manipulation request. For example, the transition function in the model of the
example Web application is undefined for state ASdetailsCloudy and IStoDetails

because the /details page does not contain an <a> link to itself:

δ(ASdetailsCloudy, IStoDetails) = {} .

Furthermore, we define that the initial application state is a single representa-
tion containing links to the resources which are the stable entry points for the
system. For example, since the example Web application’s entry point is the
/main resource, the initial state of the model ASinit could be represented as:

ASinit = [(metadata : [mediaType : “text/html”],

data : “HTML page with an < a > link to /main”)] .

Finally, steady and transient application states are supported in the model through
accepting and unaccepting states. The acceptance of a state is determined from
the media type of the first representation in the application state. For example,
in the example Web application the first representation in an application state is
always of the text/html media type meaning that all embedded resources, such
as resources linked to using and <script>, should be fetched in order
for the system to be in a steady state. Therefore, the state ASmain is accepting
(steady), while the state ASdetailsCloudy is unaccepting (transient).

3.5 Code-on-Demand Style Constraint

The code-on-demand style constraint is defined [2] as client-side execution of
downloaded scripts together with the possibility that these scripts extend the
functionality of the client. We formalize the code-on-demand constraint in the
model through ε-transitions i.e. if a script executing on the client may change
the application state from A to B without issuing a request, then this change is
modeled with an ε-transition as δ(A, ε) = {B}. In the example Web application,
the /script script changes the color of the <a> link of the /main page which
can be modeled as δ([mainlink blue], ε) = [mainlink red] and δ([mainlink red], ε) =
[mainlink blue], where mainlink red and mainlink blue are the representations of
the /main page in which the link is colored red and blue, respectively.

4 Conclusion and Future Work

The study of architectural styles is an essential part for understanding and im-
proving information systems. As the World Wide Web is the most important
global information system, the study of its foundational architectural style, Rep-
resentational State Transfer (REST), is of equal importance from both a the-
oretical and a practical perspective. Our analysis of previous research in this
field has shown that formal models of RESTful systems are unresearched, con-
sider only few core principles of RESTful systems while ignoring others and are
focused on modeling hypermedia systems in general and not RESTful systems.

In this paper we propose a formalism for modeling RESTful systems based
on nondeterministic finite-state machines with epsilon transitions (ε-NFA). We
show that ε-NFAs are a natural fit for modeling REST’s principles which are
primarily concerned with exchange of representations using states and transi-
tions. Specifically, the states of the ε-NFA represent the application states which
the system may be in at some point of execution, where each application state
is a set of resource representations. The input symbols of the ε-NFA represent
the set of resource manipulation requests while the transition function models
the hypermedia links between resources i.e. the request which may be issued at
some state. In order to support the time-varying nature of resource representa-
tions, transitions may be nondeterministic, while ε-transitions are used to model
client-side execution of code-on-demand scripts. The client-server style of REST
is therefore naturally modeled by storing the current ε-NFA state and generat-
ing input symbols on the client while the transition function is divided between
the client and server. The client is responsible for transforming input symbols
into requests and integrating resource representations into the application state,
while the server is responsible for processing requests into responses. Represen-
tation media types determine which states of the ε-NFA are accepting or not,
representing respectively steady and transient states of the system. Therefore,
with respect to the presented model, a system may be called RESTful if it can
be represented with an ε-NFA and if sequences of generated input symbols do
not lead the ε-NFA into an empty error state.

Our research gives the following insights and areas for future work. First,
although we have shown an example of using the presented formalism in model-
ing a simple Web application, the formalism should be applied to more systems,
including complex Web applications, widget-based Web applications, Web APIs
and mashups. A special focus of this effort would include the modeling of com-
posite RESTful applications. However, the goal would not be to extend the model
so that it supports modeling of all properties of all systems, but rather to use it
for reasoning about which properties of such systems are RESTful.

Second, it would be useful to explore the possibility of extending the pre-
sented formalism so that it explicitly accounts for currently unaddressed prin-
ciples of RESTful systems. For example, this could include the layered and
cacheable style constraints, and resources that map to a set of representations
with different media types, with the goal of modeling content negotiation.

Third, one specific issue which may be raised is that of the finite set lim-
itations of the presented model. Because RESTful systems are not restricted
to a finite number of states or input symbols, finite-state machines are not a
completely suitable model. The ε-NFA model may be relaxed so that the set of
states may be infinite or even not countable or, alternately, other kinds of models
for describing infinite-state machines may be used. One possible candidate are
labeled state transition systems [26], a formalism similar to finite-state machines
which permits that the number of states and transitions be infinite.

Fourth, we will explore practical applications of the model. One possible di-
rection is to use the ε-NFA model as the basis for designing a framework for

development of RESTful systems, and specifically RESTful Web applications.
Existing Web application development frameworks do not support the implemen-
tation of many RESTful constraints, such as the uniform interface constraint,
shifting that burden to the developer. We believe this to be a direct consequence
of nonexisting models with system-level mappings and that the model in this
paper is simple, yet powerful, and understandable by developers. This premise
is supported by the recently developed Restfulie framework [27] which imposes
state transitions as the underlying application development model.

Finally, in order to avoid the state explosion problem for models of complex
systems, we will consider aggregating similar states of models into a single state.
However, this requires that a suitable method for aggregation be chosen. Cur-
rently, we are researching an approach based on abstracting representations into
two parts: the constant application-level data and the variable set of hypermedia
links. This would enable that states which correspond to the same set of repre-
sentations with the same set of links and which differ only by the data would be
aggregated into a single state, significantly reducing the number of states.

Acknowledgments. The authors acknowledge the support of the Ministry of
Science, Education, and Sports of the Republic of Croatia through the Com-
puting Environments for Ubiquitous Distributed Systems (036-0362980-1921) re-
search project. Furthermore, the authors thank Sinisa Srbljic, Dejan Skvorc,
Miroslav Popovic, Klemo Vladimir, Marin Silic, Jakov Krolo and Zvonimir Pavlic
from the School of Electrical Engineering and Computing, University of Zagreb.

References

1. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One. W3C
Recommendation, WWW consortium (2004), http://www.w3.org/TR/webarch/

2. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture. In:
ACM Transactions on Internet Technology, vol. 2, no. 2, pp. 115–150 (2002)

3. Dusseault, L., Snell, J.: PATCH Method for HTTP. Proposed standard, Internet
Engineering Task Force (IETF) (2010) http://tools.ietf.org/html/rfc5789

4. Trifa, V., Guinard, D., Bolliger, P., Wieland, S.: Design of a Web-based Distributed
Location-Aware Infrastructure for Mobile Devices. In: 1st IEEE International Work-
shop on the Web of Things, Mannheim, Germany, pp. 714–719 (2010)

5. Alarcon, R., Wilde, E.: Linking Data from RESTful Services. In: 3rd International
Workshop on Linked Data on the Web, Raleigh, North Carolina, USA (2010)

6. Fitzpatrick, B., Slatkin, B., Atkins, M.: PubSubHubbub protocol, http://

pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

7. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. In: IEEE Internet comput-
ing, vol. 12, no. 5, pp. 24–31 (2008)

8. Pautasso C.: RESTful Web service composition with BPEL for REST. In: Data &
Knowledge Engineering, vol. 68, no. 9, pp. 851–866 (2009)

9. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. Ph.D. dissertation, Ludwig-
Maximilians-University of Munich, Germany (2000)

10. Fernandez, F., Navon, J.: Towards a Practical Model to Facilitate Reasoning about
REST Extensions and Reuse In: 1st International Workshop on RESTful Design,
Raleigh, North Carolina, pp. 31–38 (2010)

11. Rees, J.: ACTION-434: Some notes on organizing discussion on WebApps archi-
tecture. W3C TAG mailing list (2010), http://lists.w3.org/Archives/Public/
www-tag/2010Oct/0061.html

12. ISSUE-60: Web Application State Management. W3C TAG Issues list, http://
www.w3.org/2001/tag/group/track/issues/60

13. Fielding, R.T.: ACTION-434: Some notes on organizing discussion on WebApps
architecture. W3C TAG mailing list (2010), http://lists.w3.org/Archives/

Public/www-tag/2010Oct/0100.html

14. Kemp, J.: AWWW and the Web interaction model. W3C TAG mailing list (2010),
http://lists.w3.org/Archives/Public/www-tag/2010Jun/0034

15. Vinoski, S., RESTful Web Services Development Checklist In: IEEE Internet Com-
puting, vol. 12, no. 6, pp. 96–95, (2008)

16. Hopcroft J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing, Reading Massachusetts (1979)

17. Berners-Lee, T., Mendelsohn, N.: The Rule of Least Power W3C TAG Finding
(2006) http://www.w3.org/2001/tag/doc/leastPower.html

18. Mehta, N.R.: Composing style-based software architectures from architectural
primitives. Ph.D. dissertation, University of Southern California, California, USA
(2004)

19. Hernandez, A.G., Moreno Garcia, M.N.: A Formal Definition of RESTful Semantic
Web Services In: 1st International Workshop on RESTful Design, Raleigh, North
Carolina, pp. 39–45 (2010)

20. Decker, G., Luders, A., Overdick, H., Schlichting, K., Weske, M.: RESTful Petri
Net Execution. In: Web Services and Formal Methods, Springer-Verlag Berlin, Hei-
delberg, pp. 73–87 (2009)

21. Alarcon, R., Wilde, E., Bellido, J.: Hypermedia-driven RESTful Service Composi-
tion. In: 6th Workshop on Engineering Service-Oriented Applications, San Francisco,
California, (2010)

22. Charlton, S.: Building a RESTful Hypermedia Agent, Part 1. (2010) http://www.
stucharlton.com/blog/archives/2010/03/building-a-restful-hypermedia

23. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modeling methods for web application veri-
fication and testing: state of the art. In: Software Testing, Verification & Reliability
archive, vol. 19, no. 4, pp. 265-296, John Wiley and Sons Ltd. Chichester, UK (2009)

24. Stotts, P.D., Furuta, R., Cabarrus, C.R.: Hyperdocuments as Automata: Veri-
fication of Trace-Based Properties by Model Checking In: ACM Transactions on
Information Systems, vol. 16, no. 1, pp. 1–30 (1998)

25. Dargham, J., Al-Nasrawi, S.: FSM Behavioral Modeling Approach for Hypermedia
Web Applications: FBM-HWA Approach. In: Advanced International Conference
on Telecommunications and International Conference on Internet and Web Appli-
cations and Services, Guadeloupe, French Caribbean, pp. 199–199 (2006)

26. Trybulec, M.: Labelled State Transition Systems In: Formalized mathematics, vol.
17, no. 2, pp. 163–171, (2009)

27. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The role of hypermedia in
distributed system development. In: 1st International Workshop on RESTful Design,
Raleigh, North Carolina, pp. 16–22 (2010)

