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Ivan Zuzak

● Ph.D student, University of Zagreb
● Consumer Computing Laboratory

●                     http://www.geppeto.fer.hr       
● Consumer programming methodology
● Architectural styles, WWW infrastructure

● This Week in REST http://thisweekinrest.wordpress.com 
● Bi-weekly blog on recent news about the REST style

http://www.geppeto.fer.hr/
http://thisweekinrest.wordpress.com/
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Agenda

● Introduction
● Motivation for modeling RESTful systems

● FSM Model of REST
● REST introduction
● eNFA introduction
● Mapping REST to eNFA
● Example Web application

● Closing Remarks
● Future Work
● Conclusion

63 slides?!?
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Representational State Transfer (REST)

● Software architectural style
● Abstract design principles

● Distributed hypermedia systems

● Scalability, simplicity, reliability ...

● Foundation of (a part of) the 
World Wide Web architecture

● HTTP, URI, HTML 
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Importance of Understanding REST

● Understanding and evolving the WWW
● The WWW has grown in scale and complexity
● Where are we now and where should we go?

● Applying REST to other domains
● WWW is only one instance of REST
● Can REST be applied to other domains? How?

● Engineering
● Understanding is the basis for doing and doing well
● Software frameworks, tools, … 

Real-Time 
Web

REST
discuss
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Problems with Understanding REST

● Lack of simple and operational formal models

● Existing models

● Semi-formal diagrams and natural language descriptions 
● Formal models of hypermedia systems (not REST)
● Models focused on the WWW (not REST)
● Separate client and server
● Static, non-operational
● Misuse of terminology
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Research Goal – Formalism for Modeling 
RESTful Systems

● Any RESTful system
● The WWW is a guide, not a judge

● System as a whole 
● Integrated view of both the client and server operation (the application)

● Operational
● Both the static and dynamic view of operation

● Simple, understandable by researchers and engineers
● “Use the least powerful language suitable for expressing information, 

constraints or programs on the World Wide Web.”, 2006, W3C TAG

● Use established concepts and terminology
● Dr. Fielding's thesis
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REST Principles 101



June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 9/63

REST Principles 101

● Layered client-server

Cacheable

Stateless

Code-on-demand

Uniform interface

Identification of resources

Manipulation of resources through 
representations

Self-descriptive messages
Methods, link types, media types, … 

Hypermedia as the engine of 
application state

Links
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Finite State Machines

● ε-NFA formalism

Nondeterministic

Epsilon transitions

States × (Inputs U ε) → 
P(State)
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Finite State Machines

● ε-NFA formalism

● Finite state machine
● Nondeterministic
● Epsilon transitions
● Transition Function: 
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Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)

States = AppStates, AppStates  P(Representations) − {}⊆
Application state is a set of resource representations

Start state = initial application state at system startup

Representation with links to entry-points of know applications

Inputs  (Requests × LinkTypes)⊆
Requests  (Operations×ResourceIDs×Representations)⊆

TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

Translation of input symbols into server requests

Processing of requests into responses (nondeterministic!)

Integration of response representations into the next application state

Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates  AppStates⊆
In steady states, representations of all embedded resources are present in the application state
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Importance of Link Types

● Different state transition semantics

GET /photo.jpg HTTP/1.1

 

HTTP/1.1 200 OK

● Navigation to image (<a>) or embedding in a 
Web page (<img>)?
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Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function
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Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

<A>

<A>
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Example: Weather Forecast Web Application

Welcome!
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// script changes
// color of <a> tags
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<SCRIPT>

<A>

<A>
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Example: Weather Forecast Web Application

Welcome!
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Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

// script changes
// color of <a> tags {25, 15}

Temp: 25C

/sunny

/cloudy

/temp/script

<IMG>

<SCRIPT>

XHR

<A>

<A>
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Example: Weather Forecast Web Application

S20

Initial State
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Example: Weather Forecast Web Application

S20 1
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Example: Weather Forecast Web Application
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Example: Weather Forecast Web Application

AS
main

 = [(metadata : “...”, data : “/main contents”),

               (metadata : “...”, data : “/script contents”)]

IS
toDetails

 = (request : (method : “GET ”, resourceId : “/details”,

               representation : “”), linkType : “<a>”)

δ(AS
main

, IS
toDetails

) = {AS
detailsCloudy

, AS
detailsSunny

}

AS
detailsCloudy

 = [(metadata : [mediaType : “text/html”],

                        data : “/details content with link to /cloudy”)]
 
AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

                       data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page
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                        data : “/details content with link to /cloudy”)]
 
AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

                       data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page

/details page 
request

/details transition

Partially loaded 
/details page
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Future Work

● Reduce state explosion problem
● Aggregating similar states into a single state

– States are similar if they have the same representations 
with the same links, but data may be different

Apply the formalism to more systems

Web 1.0 documents vs Web 2.0 applications

Web APIs vs Web applications

Unaddressed priciples of RESTful systems

Layered and cacheable constraints

Software framework for development of RESTful 
systems
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Conclusion

● Understanding REST is important
● Formal models, systematization, terminology

● eNFA formalism 
● Captures “~98%” of REST's principles
● Simple, generic, operational, system-wide

● Exciting directions for future research!
● Annonymous reviewer: “A model by itself has little 

value unless it is used for some purpose.”
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Thank you!
Contact:

izuzak@gmail.com 

http://twitter.com/izuzak 

mailto:izuzak@gmail.com
http://twitter.com/izuzak
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