
Formal Modeling of RESTful Systems Formal Modeling of RESTful Systems
Using Finite-State MachinesUsing Finite-State Machines

Ivan Zuzak, Ivan Budiselic, Goran Delac
School of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 2/63

Ivan Zuzak

● Ph.D student, University of Zagreb
● Consumer Computing Laboratory

● http://www.geppeto.fer.hr
● Consumer programming methodology
● Architectural styles, WWW infrastructure

● This Week in REST http://thisweekinrest.wordpress.com
● Bi-weekly blog on recent news about the REST style

http://www.geppeto.fer.hr/
http://thisweekinrest.wordpress.com/

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 3/63

Agenda

● Introduction
● Motivation for modeling RESTful systems

● FSM Model of REST
● REST introduction
● eNFA introduction
● Mapping REST to eNFA
● Example Web application

● Closing Remarks
● Future Work
● Conclusion

63 slides?!?

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 4/63

Representational State Transfer (REST)

● Software architectural style
● Abstract design principles

● Distributed hypermedia systems

● Scalability, simplicity, reliability ...

● Foundation of (a part of) the
World Wide Web architecture

● HTTP, URI, HTML

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 5/63

Importance of Understanding REST

● Understanding and evolving the WWW
● The WWW has grown in scale and complexity
● Where are we now and where should we go?

● Applying REST to other domains
● WWW is only one instance of REST
● Can REST be applied to other domains? How?

● Engineering
● Understanding is the basis for doing and doing well
● Software frameworks, tools, …

Real-Time
Web

REST
discuss

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 6/63

Problems with Understanding REST

● Lack of simple and operational formal models

● Existing models

● Semi-formal diagrams and natural language descriptions
● Formal models of hypermedia systems (not REST)
● Models focused on the WWW (not REST)
● Separate client and server
● Static, non-operational
● Misuse of terminology

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 7/63

Research Goal – Formalism for Modeling
RESTful Systems

● Any RESTful system
● The WWW is a guide, not a judge

● System as a whole
● Integrated view of both the client and server operation (the application)

● Operational
● Both the static and dynamic view of operation

● Simple, understandable by researchers and engineers
● “Use the least powerful language suitable for expressing information,

constraints or programs on the World Wide Web.”, 2006, W3C TAG

● Use established concepts and terminology
● Dr. Fielding's thesis

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 8/63

REST Principles 101

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 9/63

REST Principles 101

● Layered client-server

Cacheable

Stateless

Code-on-demand

Uniform interface

Identification of resources

Manipulation of resources through
representations

Self-descriptive messages
Methods, link types, media types, …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Req Resp

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 10/63

REST Principles 101

● Layered client-server

● Cacheable

Stateless

Code-on-demand

Uniform interface

Identification of resources

Manipulation of resources through
representations

Self-descriptive messages
Methods, link types, media types, …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

Req Resp

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 11/63

REST Principles 101

● Layered client-server

● Cacheable

● Stateless

Code-on-demand

Uniform interface

Identification of resources

Manipulation of resources through
representations

Self-descriptive messages
Methods, link types, media types, …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

App
state

Req Resp

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 12/63

REST Principles 101

● Layered client-server

● Cacheable

● Stateless

● Code-on-demand

Uniform interface

Identification of resources

Manipulation of resources through
representations

Self-descriptive messages
Methods, link types, media types, …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

App
state

Req Resp

COD engine

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 13/63

REST Principles 101

● Layered client-server

● Cacheable

● Stateless

● Code-on-demand

● Uniform interface
● Identification of resources

● Manipulation of resources through
representations

Self-descriptive messages
Methods, link types, media types, …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

App
state

ResResRes

Req Resp

COD engine

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 14/63

REST Principles 101

● Layered client-server

● Cacheable

● Stateless

● Code-on-demand

● Uniform interface
● Identification of resources

● Manipulation of resources through
representations

● Self-descriptive messages

– Operations, media types, metadata …

Hypermedia as the engine of
application state

Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

App
state

ResResRes

Req Resp

Message
processor
Message

processor

Message
processor

Message
processor

COD engine

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 15/63

REST Principles 101

● Layered client-server

● Cacheable

● Stateless

● Code-on-demand

● Uniform interface
● Identification of resources

● Manipulation of resources through
representations

● Self-descriptive messages

– Operations, media types, metadata …

● Hypermedia as the engine of
application state

– Links

U
ser

ag
en

t
In

term
e d

iaries
O

rig
in

server

Cache

Cache

Cache

App
state

ResResRes

Req Resp

Message
processor
Message

processor

Message
processor

Message
processor

COD engine

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 16/63

Finite State Machines

● ε-NFA formalism

Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 17/63

Finite State Machines

● ε-NFA formalism

● Finite state machine

Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S
2

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 18/63

Finite State Machines

● ε-NFA formalism

● Finite state machine

Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S
2

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 19/63

Finite State Machines

● ε-NFA formalism

● Finite state machine

Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S
2

a

b

a

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 20/63

Finite State Machines

● ε-NFA formalism

● Finite state machine

Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S2S
2

a

b

a

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 21/63

Finite State Machines

● ε-NFA formalism

● Finite state machine
● Nondeterministic

Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S2S
2

a

a

b

a

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 22/63

Finite State Machines

● ε-NFA formalism

● Finite state machine
● Nondeterministic
● Epsilon transitions

States × (Inputs U ε) →
P(State)

S
0

S
1

S2S
2

a

a

b

a

ε

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 23/63

Finite State Machines

● ε-NFA formalism

● Finite state machine
● Nondeterministic
● Epsilon transitions
● Transition Function:

States × (Inputs U ε) → P(States)

S
0

S
1

S2S
2

a

a

b

a

ε

Power set!

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 24/63

Finite State Machines

● ε-NFA formalism

● Finite state machine
● Nondeterministic
● Epsilon transitions
● Transition Function:

States × (Inputs U ε) → P(States)

S
0

S
1

S2S
2

● System level view

Nondeterministism

Transition function returns
any state from a set, not
known in advance which
one

a

a

b

a

ε

Input
Symbol

Generator

Input
Symbol

Generator

Current
State

Current
State

Transition
Function

Transition
Function(1)

(2)

(2)

(3)

Power set!

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 25/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)

States = AppStates, AppStates P(Representations) − {}⊆
Application state is a set of resource representations

Start state = initial application state at system startup

Representation with links to entry-points of know applications

Inputs (Requests × LinkTypes)⊆
Requests (Operations×ResourceIDs×Representations)⊆

TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

Translation of input symbols into server requests

Processing of requests into responses (nondeterministic!)

Integration of response representations into the next application state

Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates AppStates⊆
In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 26/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)
● States = AppStates, AppStates P(Representations) − {}⊆

– Application state is a subset of all possible representations of all resources

Start state = initial application state at system startup

Representation with links to entry-points of know applications

Inputs (Requests × LinkTypes)⊆
Requests (Operations×ResourceIDs×Representations)⊆

TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

Translation of input symbols into server requests

Processing of requests into responses (nondeterministic!)

Integration of response representations into the next application state

Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates AppStates⊆
In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 27/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)
● States = AppStates, AppStates P(Representations) − {}⊆

– Application state is a subset of all possible representations of all resources

● Initial = initial application state at system startup

– Representation with links to entry-points of known applications

Inputs (Requests × LinkTypes)⊆
Requests (Operations×ResourceIDs×Representations)⊆

TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

Translation of input symbols into server requests

Processing of requests into responses (nondeterministic!)

Integration of response representations into the next application state

Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates AppStates⊆
In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 28/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)
● States = AppStates, AppStates P(Representations) − {}⊆

– Application state is a subset of all possible representations of all resources

● Initial = initial application state at system startup

– Representation with links to entry-points of known applications

● Inputs (Requests × LinkTypes)⊆

– Requests (Operations×ResourceIDs×Representations)⊆

TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

Translation of input symbols into server requests

Processing of requests into responses (nondeterministic!)

Integration of response representations into the next application state

Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates AppStates⊆
In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 29/63

Importance of Link Types

● Different state transition semantics

GET /photo.jpg HTTP/1.1

HTTP/1.1 200 OK

● Navigation to image (<a>) or embedding in a
Web page ()?

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 30/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)
● States = AppStates, AppStates P(Representations) − {}⊆

– Application state is a subset of all possible representations of all resources

● Initial = initial application state at system startup

– Representation with links to entry-points of known applications

● Inputs (Requests × LinkTypes)⊆

– Requests (Operations×ResourceIDs×Representations)⊆

● TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

– Translation of input symbols into server requests

– Processing of requests into responses (nondeterministic!)

– Integration of response representations into the next application state

– Code-on-demand transitions on the client

Accepting = SteadyStates, SteadyStates AppStates⊆
In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 31/63

Mapping REST to eNFA

● FSM = (States, Inputs, Initial, TransitionFunction, Accepting)
● States = AppStates, AppStates P(Representations) − {}⊆

– Application state is a subset of all possible representations of all resources

● Initial = initial application state at system startup

– Representation with links to entry-points of known applications

● Inputs (Requests × LinkTypes)⊆

– Requests (Operations×ResourceIDs×Representations)⊆

● TransitionFunction : AppStates × ((Requests × LinkTypes) U ε) → P(AppStates)

– Translation of input symbols into server requests

– Processing of requests into responses (nondeterministic!)

– Integration of response representations into the next application state

– Code-on-demand transitions on the client

● Accepting = SteadyStates, SteadyStates AppStates⊆

– In steady states, representations of all embedded resources are present in the application state

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 32/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 33/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 34/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

Application
State

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 35/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application
State

(1)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 36/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 37/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

Request
Preprocessor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 38/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

Request
Preprocessor

Request
Processor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

(4)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 39/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

State
Integrator

Request
Preprocessor

Request
Processor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

(4)

(5)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 40/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

State
Integrator

Request
Preprocessor

Request
Processor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

(4)

(5)

(6)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 41/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

State
Integrator

Request
Preprocessor

Code-on-demand
Engine

Request
Processor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 42/63

Mapping REST to eNFA

Input Symbol GeneratorInput Symbol Generator

Current StateCurrent State

Transition FunctionTransition Function

State
Integrator

Request
Preprocessor

Code-on-demand
Engine

Request
Processor

M
ed

ia
 T

yp
e

P
ro

ce
ss

or

Application-level
Logic

Application
State

Hypermedia-level
 Logic

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7)

(8)

REST client

R
E

S
T

server

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 43/63

Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

<A>

<A>

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 44/63

Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

// script changes
// color of <a> tags

/script

<SCRIPT>

<A>

<A>

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 45/63

Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

// script changes
// color of <a> tags {25, 15}

Temp: 25C

/temp/script

<SCRIPT>

XHR

<A>

<A>

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 46/63

Example: Weather Forecast Web Application

Welcome!

Details Main

/main /details

// script changes
// color of <a> tags {25, 15}

Temp: 25C

/sunny

/cloudy

/temp/script

<SCRIPT>

XHR

<A>

<A>

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 47/63

Example: Weather Forecast Web Application

S20

Initial State

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 48/63

Example: Weather Forecast Web Application

S20 1

Main page

aa

Initial State

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 49/63

Example: Weather Forecast Web Application

S20 1

Main page
Script fetch and
color changes

S22

S23

a

b

a

ε

ε

Initial State

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 50/63

Example: Weather Forecast Web Application

S20 1

4

5

Main page
Script fetch and
color changes Details page

S22

S23

a

b

c

c

c

c

a

ε

ε

Initial State

S
unny w

eather
C

loudy w
eathe r

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 51/63

Example: Weather Forecast Web Application

S20 1

4

5

Main page
Script fetch and
color changes Details page Weather image

S22

S23

S26

S27

a

b

c d

ec

c

c

a

ε

ε

Initial State

S
unny w

eather
C

loudy w
eathe r

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 52/63

Example: Weather Forecast Web Application

S20 1

4

5

Main page
Script fetch and
color changes Details page Weather image

Temperature fetches
and changes

S22

S23

S26

S27

S28 S212

S29 S213

S210 S214

S211 S215

a

b

c d

ec

c

c

a

f

f f

f

ε

ε

ε

ε

ε

ε

Initial State

S
unny w

eather
C

loudy w
eathe r

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 53/63

Example: Weather Forecast Web Application

S20 1

4

5

Main page
Script fetch and
color changes Details page Weather image

Temperature fetches
and changes

S22

S23

S26

S27

S28 S212

S29 S213

S210 S214

S211 S215

a

b

c d

ec

c

c

a a

a

a

f

f f

f

ε

ε

ε

ε

ε

ε

Initial State

S
unny w

eather
C

loudy w
eathe r

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 54/63

Example: Weather Forecast Web Application

AS
main

 = [(metadata : “...”, data : “/main contents”),

 (metadata : “...”, data : “/script contents”)]

IS
toDetails

 = (request : (method : “GET ”, resourceId : “/details”,

 representation : “”), linkType : “<a>”)

δ(AS
main

, IS
toDetails

) = {AS
detailsCloudy

, AS
detailsSunny

}

AS
detailsCloudy

 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /cloudy”)]

AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 55/63

Example: Weather Forecast Web Application

AS
main

 = [(metadata : “...”, data : “/main contents”),

 (metadata : “...”, data : “/script contents”)]

IS
toDetails

 = (request : (method : “GET ”, resourceId : “/details”,

 representation : “”), linkType : “<a>”)

δ(AS
main

, IS
toDetails

) = {AS
detailsCloudy

, AS
detailsSunny

}

AS
detailsCloudy

 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /cloudy”)]

AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page

/details page
request

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 56/63

Example: Weather Forecast Web Application

AS
main

 = [(metadata : “...”, data : “/main contents”),

 (metadata : “...”, data : “/script contents”)]

IS
toDetails

 = (request : (method : “GET ”, resourceId : “/details”,

 representation : “”), linkType : “<a>”)

δ(AS
main

, IS
toDetails

) = {AS
detailsCloudy

, AS
detailsSunny

}

AS
detailsCloudy

 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /cloudy”)]

AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page

/details page
request

/details transition

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 57/63

Example: Weather Forecast Web Application

AS
main

 = [(metadata : “...”, data : “/main contents”),

 (metadata : “...”, data : “/script contents”)]

IS
toDetails

 = (request : (method : “GET ”, resourceId : “/details”,

 representation : “”), linkType : “<a>”)

δ(AS
main

, IS
toDetails

) = {AS
detailsCloudy

, AS
detailsSunny

}

AS
detailsCloudy

 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /cloudy”)]

AS

detailsSunny
 = [(metadata : [mediaType : “text/html”],

 data : “/details content with link to /sunny”)]

δ(AS
detailsCloudy

, IS
toDetails

) = {}

Fully loaded
/main page

/details page
request

/details transition

Partially loaded
/details page

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 58/63

Future Work

● Reduce state explosion problem
● Aggregating similar states into a single state

– States are similar if they have the same representations
with the same links, but data may be different

Apply the formalism to more systems

Web 1.0 documents vs Web 2.0 applications

Web APIs vs Web applications

Unaddressed priciples of RESTful systems

Layered and cacheable constraints

Software framework for development of RESTful
systems

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 59/63

Future Work

● Reduce state explosion problem
● Aggregating similar states into a single state

– States are similar if they have the same representations
with the same links, but data may be different

● Apply the formalism to more systems
● Web 1.0 documents vs Web 2.0 applications
● Web APIs vs Web applications

Unaddressed priciples of RESTful systems

Layered and cacheable constraints

Software framework for development of RESTful
systems

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 60/63

Future Work

● Reduce state explosion problem
● Aggregating similar states into a single state

– States are similar if they have the same representations
with the same links, but data may be different

● Apply the formalism to more systems
● Web 1.0 documents vs Web 2.0 applications
● Web APIs vs Web applications

● Unaddressed priciples of RESTful systems
● Layered and cacheable constraints

Software framework for development of RESTful
systems

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 61/63

Future Work

● Reduce state explosion problem
● Aggregating similar states into a single state

– States are similar if they have the same representations
with the same links, but data may be different

● Apply the formalism to more systems
● Web 1.0 documents vs Web 2.0 applications
● Web APIs vs Web applications

● Unaddressed priciples of RESTful systems
● Layered and cacheable constraints

● Software framework for development of RESTful
systems

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 62/63

Conclusion

● Understanding REST is important
● Formal models, systematization, terminology

● eNFA formalism
● Captures “~98%” of REST's principles
● Simple, generic, operational, system-wide

● Exciting directions for future research!
● Annonymous reviewer: “A model by itself has little

value unless it is used for some purpose.”

June 22, 2011 Formal Modeling of RESTful Systems Using Finite-State Machines 63/63

Thank you!
Contact:

izuzak@gmail.com

http://twitter.com/izuzak

mailto:izuzak@gmail.com
http://twitter.com/izuzak

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

