
Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

Formal Model for Data Dependency Analysis
between Controls and Actions of a Graphical

User Interface

Dejan SKVORC, Ivan ZUZAK, Sinisa SRBLJIC
University of Zagreb, School of Electrical Engineering and Computing, HR-10000, Zagreb, Croatia

dejan.skvorc@fer.hr, ivan.zuzak@fer.hr, sinisa.srbljic@fer.hr

1Abstract—End-user development is an emerging computer

science discipline that provides programming paradigms,
techniques, and tools suitable for users not trained in software
engineering. One of the techniques that allow ordinary
computer users to develop their own applications without the
need to learn a classic programming language is a GUI-level
programming based on programming-by-demonstration. To
build wizard-based tools that assist users in application
development and to verify the correctness of user programs, a
computer-supported method for GUI-level data dependency
analysis is necessary. Therefore, formal model for GUI
representation is needed. In this paper, we present a finite state
machine for modeling the data dependencies between GUI
controls and GUI actions. Furthermore, we present an
algorithm for automatic construction of finite state machine for
arbitrary GUI application. We show that proposed state
aggregation scheme successfully manages state explosion in
state machine construction algorithm, which makes the model
applicable for applications with complex GUIs.

Index Terms—computer aided software engineering, formal
specifications, graphical user interfaces, programming
environments, user centered design.

I. INTRODUCTION

Graphical user interfaces, or GUIs for short, are a
predominant technique of interaction with current software-
driven systems. A GUI is a type of user interface which
allows people to interact with electronic devices by
exposing the inputs and outputs of the device as a set of
visually represented controls and enabling user-driven
actions upon these controls. A GUI uses a combination of
technologies and devices to provide an environment the user
can interact with, in order to gather or produce information.
The most common form of GUI in the field of personal
computers is the WIMP paradigm [1]. This paradigm uses
physical input devices to control the system’s data input as
well as the position of a cursor, and outputs the information
on to a display device. Available commands to control the
target system are compiled together in windows, menus, and
icons and acted upon through physical input devices, such as
keyboard and mouse.

In recent years, especially with the advent of Web 2.0,
automation of GUI applications has been more actively
researched and a number of GUI automation tools have been
developed. Such tools allow users to build customized
programs that automate operations over the applications’
GUI and integrate content from multiple sources into a

coherent whole. The particular purpose of GUI automation
tools ranges from web automation and testing to
customization and even application development.

1This work was supported by the Croatian Ministry of Science,

Education, and Sports under Grant 036-0362980-1921.

Although the development of user programs in majority
of such tools still relies on low-level technologies like
parsing HTML, scripting with JavaScript, and styling with
CSS, recent tools like Chickenfoot [2], Marmite [3], Geppeto
[4], Selenium [5], and Sikuli [6] operate at a GUI level. In
this type of programming paradigm, programming
primitives describe GUI operations like filling in forms,
clicking on links and buttons, or selecting items from drop-
down menus. Because of their closeness to human
perception of the GUI, these characteristics make such tools
appropriate even for non-programmers.

However, in order to verify the correctness of such GUI
programs, models that describe the behavior of applications
at the GUI level are required. Furthermore, the definition of
correct usage of GUIs must be appropriately defined with
respect to GUI dynamics and integrated into models.
Additionally, the practical applicability of models depends
on both their simplicity and expressiveness as requirements
for supporting automatic construction of application
descriptions and effective verification.

Although many models of GUI applications have been
previously developed with the specific purpose of GUI
testing, our work has complementary motivation and
requirements. In GUI testing [7], [8], GUI applications are
being verified and the premise is that GUI-level programs
that test them are correct, whereas our work focuses on
cases where GUI applications are known to be correct and
GUI-level programs require verification.

In this paper, we present a formal model for describing
data dependencies among controls and operations of a
graphical user interface. Since data dependencies at a GUI
level dictate the temporal ordering of GUI operations for
reaching the desired state of the application, we use this as
the basis for the definition of correct GUI usage. The formal
model for describing data dependencies is constructed in a
form of a finite state machine [9], where states describe the
state of GUI controls, while transitions describe GUI
operations. We describe how such finite state machines may
be efficiently generated automatically based on a simple
description of GUI structure and operation-level data
dependencies. Furthermore, we explain how the formal
model may be used both to guide the construction of GUI-
level programs and to verify temporal characteristics of
GUI-level programs prior to their execution.

 63

Digital Object Identifier 10.4316/AECE.2012.01011

1582-7445 © 2012 AECE

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

The rest of the paper is organized as follows. In Section 2,
we introduce basic concepts of data dependency at the GUI
level. In Section 3, we construct a finite state machine
describing data dependencies for a single GUI element,
while in Section 4 we give rules for construction of
application-level finite state machines. In Section 5, we
outline the algorithm for construction of application-level
finite state machines. In Section 6 and 7, we discuss the
efficiency of the presented model and algorithm, and discuss
model usage. In Section 8, we compare our research to the
work done in the field of GUI testing, while Section 9
concludes the paper.

II. DATA DEPENDENCIES AT GUI LEVEL

The algorithm for construction of a formal model in a
form of a finite state machine is exemplified through a
sample web application GUI shown in Fig. 1. The purpose
of the given application is to support online translation of
natural languages. The GUI consists of two text areas, two
drop-down menus, and two button controls. The input text
area is used to enter the text in the source language, while
the output text area shows the translated text. The drop-
down menus are used to select the source and target
languages, while buttons are used to start the translation of
source text and pronunciation of translated text.

To automate the usage of the web application shown in
Fig. 1, the user may construct a program consisting of
primitives that mimic the human operation on GUI
elements. Typing text into the input text area, selecting an
item from the From menu, selecting an item from the To

menu, clicking the Translate button, clicking the Pronounce
button, and copying text from the output text area into some
other input element are six different operations that can be
performed over the given set of GUI elements.

To achieve a certain task, the user program will perform a
sequence of the listed operations which will guide the
application to the desired state. If the GUI is used manually
by an end-user, using a keyboard and pointing device, the
proper ordering of operations is inferred by the user herself
from the application semantics, as well as visual layout,
labeling, and grouping of the GUI controls. For example,
there is no sense in clicking the Translate button if the input
text area is empty or any of the languages is not selected.
Even if a faulty interaction occurs, manual operation allows
the user to correct herself through multiple trial-and-error
cycles.

However, to check the correctness of a user program
automatically, we need to check whether the ordering of
programming primitives is a correct and sensible usage of
the GUI. For this reason, GUI data dependencies may be
used to determine the correct temporal ordering of GUI
operations for reaching the desired state of the application.

To construct a finite state machine for describing the
correct GUI usage, information regarding both the structure
and the dynamics of the GUI is needed. On a higher level of
abstraction, a GUI can be modeled as an ordered pair
consisting of a finite set of GUI elements and a finite set of
GUI operations. Fig. 2 shows the abstract model for the web
application GUI shown in Fig. 1, where G represents an
ordered pair consisting of a finite set of GUI elements E and
finite set of GUI operations O. As shown in Fig. 2, the GUI
of the given web application consists of six elements which
support six different operations to be performed by an end-
user.

Figure 1. A sample web application GUI

TABLE 1. DOMAINS AND CO-DOMAINS OF GUI OPERATIONS
Operation Domain Co-domain

write Input Text  Input Text
select From  From
select To  To
click Translate Input Text, From, To Output Text
click Pronounce Output Text 
read Output Text Output Text paste target element

From a GUI-level data dependency analysis perspective,

GUI elements are elementary units, while GUI operations
are complex structures which can be further described with
two sets, the domain and the co-domain of the operation.
The domain of an operation is a set of GUI elements which
are used as inputs for the given operation. On the other
hand, the co-domain of an operation is a set of GUI
elements where the results of the operation are written to.
Table 1 shows the domain and co-domain for each of the
GUI operations of the web application shown in Fig. 1.

Figure 2. Abstraction of a web application GUI with a set of

GUI elements and GUI operations

III. ELEMENT-LEVEL FINITE STATE MACHINE

GUI elements of an application can be divided into two
groups. The first group, which we call content-sensitive
elements, consists of elements that contain application-
generated or user-generated content. For example, elements
named Input Text, From, and To contain user-generated
content since user defines the values contained in these
elements. On the other hand, Output Text contains

 64

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

application-generated content since the content of this
element is generated by internal application logic. The
remaining elements are called content-free elements. For
example, control buttons Translate and Pronounce are
content-free elements because they are used only to start
certain operations and do not change their content over time.

We aggregate all possible states of each content-sensitive
GUI element during the execution of the application into
three abstract states. The content of the GUI element can be
either defined or undefined. If the content of the element is
defined, we can further make a distinction between
refreshed and used content. We introduce three labels

representing the three basic states of the GUI elements:
NDEF, REF, and USED. NDEF denotes that the content of
the element is not yet defined, REF denotes that the element
contains refreshed content, while USED denotes that the
content of the element was used by an operation.

We model the transitions of GUI elements between the
three basic states by the finite state machine shown in Fig. 3.
Initially, elements have no content defined and therefore are
in the NDEF state. Once the content of the element is
defined by an operation, the element changes its state to
REF. Once another operation uses the previously refreshed
content, the element enters the USED state. After usage, the
content of the element can be redefined, which lead the
element back to the REF state. Other transitions between the
described states are considered as incorrect usage of the GUI
element. For example, using the element with undefined
content is not allowed.

The execution of particular GUI operation impacts the
content of GUI elements that belong to its domain and co-
domain. If the element belongs to the domain of the given
operation, then the operation uses the content of the element.
Otherwise, if the element belongs to the co-domain of the
given operation, the operation refreshes the content of the
element. Hence, we can distinguish between two types of
operations, definition and usage, to model the effect of any
GUI operation. The finite state machine shown in Fig. 3
uses these two abstract types of GUI operations to model the
transitions between GUI element states.

IV. APPLICATION-LEVEL FINITE STATE MACHINE

The finite state machine introduced in Section 3 models
the transitions of a particular GUI element in response to
different types of operations performed over that element. In
order to model the GUI dynamics of an entire application,
we extend the element-level state machine to the
application-level state machine. The application-level FSM
is a composition of element-level FSMs which respects data
dependencies of all GUI elements within an application and
guides the ordering of GUI operations.

A. Input data

In order to construct state machines describing GUI
element dynamics, the structure of the application GUI and
the dynamics of operations must be known. The structure of
a GUI, as exemplified in Fig. 2, is given with expression (1):

  ,G E O (1)

where E is the set of GUI element names and O is the set of
operation names. Also, as exemplified in Table 1, each
operation Op must be defined by its domain and co-domain
sets Dop and Cop:

  , , ,op op op opOp D C D E C E   (2)

Figure 3. Finite state machine describing the dynamics of a

single GUI element

The set of content-sensitive elements CE may be computed
from (1) and (2) using expression (3):

    , : | x xCE e O x O e D e C     (3)

which means that GUI element e is considered content-
sensitive if it appears as either domain or co-domain of at
least one GUI operation.

B. FSM state construction

The basic finite state machine described in Section 3
shows how a particular GUI element changes states in
response to GUI operations. However, in a general case, the
GUI of an application contains more than one GUI element.
Hence, the first step in construction of the application-level
finite state machine is to change the way we construct the
FSM states in order to represent the state of the entire GUI,
instead of a single GUI element.

The states of the application-level FSM are constructed as
multi-dimensional vectors. Each vector has N dimensions,
where N is the number of content-sensitive GUI elements.
Each dimension of the multi-dimensional FSM state
represents the state of exactly one GUI element. For
example, each state of the application-level FSM for sample
application shown in Fig. 1 has four dimensions, since the
GUI of the given application has four content-sensitive
elements. The first dimension of the four-dimensional state
represents the state of the Input Text textual area, the second
dimension represents the state of the From drop-down
menu, the third represents the state of the To drop-down
menu, while the fourth dimension represents the state of the
Output Text textual area.

Each dimension of the multi-dimensional FSM state can
be assigned one of three possible values: NDEF, REF, or
USED. In the case of the web application shown in Fig. 1,
the FSM state [NDEF, NDEF, NDEF, NDEF] represents the
GUI state where all content-sensitive GUI elements are not
yet defined. This represents the state of the application at the
beginning of execution. Similarly, FSM state [REF, REF,
REF, NDEF] represents the GUI state where input text is
entered into Input Text textual area, and the source and
target languages are selected from From and To drop-down
menus, but the content of the Output Text textual area is not
yet defined. Such a state occurs immediately before the

 65

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

Translate button is ready to be pressed.
Since each application has a finite set of GUI elements

and each dimension of the multi-dimensional FSM states
has exactly three possible values, we can calculate the
maximum number of states required to construct the
application-level FSM. The maximum number of states is
given by expression (4):

 | | 3CEQ  (4)

where Q represents the set of states of the FSM, while |CE|
is the number of content-sensitive GUI elements. Since the
maximum number of FSM states is finite for any given
application, expression (4) confirms the feasibility of
construction of the application-level FSM using multi-
dimensional states.

C. FSM alphabet construction

Once the set of states of the application-level FSM is
created, the second step is construction of the alphabet
symbols to manage the transitions between states. Since the
states of the application-level FSM reflect the state of the
content-sensitive GUI elements, while the states of GUI
elements are impacted by executing GUI operations, the
alphabet of the application-level FSM is derived from these
operations. The alphabet of the application-level FSM
corresponds to the set of GUI operations for the given
application. As shown in Fig. 4, the FSM alphabet for the
web application shown in Fig. 1 consists of six symbols
since the given application has six different GUI operations.

D. FSM transitions construction

Given the set of states and set of alphabet symbols, the
construction of the transitions of the application-level state
machine is based on four rules described in the following
sections.

Domain definition rule

The domain definition rule requires that the content of
each element that belongs to the domain of a given
operation has to be defined before the operation is
performed. Domain definition rule asserts that performing
an operation does not make sense if one or more input
elements for that operation are undefined. Expression (5)
describes the domain definition rule:

      , : |
DEFD opR s op d D s d REF s d USED     (5)

where s denotes a particular state of the application-level
FSM, op denotes an operation, Dop denotes the set of

elements comprising the domain of operation op, and s[d]
denotes the value of the state s for a GUI element d.
According to expression (5), to satisfy the domain definition
rule, each content-sensitive GUI element belonging to the
domain of an operation has to be either in REF or USED
state in order to perform an operation.

Figure 4. The alphabet of an application-level finite state

machine for the web application shown in Fig. 1

Domain refreshness rule

The domain refreshness rule requires that the content of at
least one element that belongs to the domain of a given
operation must be refreshed before the operation is
performed. Domain refreshness rule asserts that there is no
sense in performing the same operation multiple times if at
least one input element has not been redefined in the
meantime. Expression (6) describes the domain refreshness
rule:

    , : |
REFD opR s op d D s d REF   (6)

According to expression (6), to satisfy the domain

refreshness rule, at least one content-sensitive GUI element
belonging to the domain of an operation has to be in REF
state in order to perform that operation.

Co-domain non-definition rule

Co-domain non-definition rule requires that the content of
each element that belongs to the co-domain of a given
operation has to be undefined before the operation is
performed. Co-domain non-definition rule enables a cold-
start of GUI applications when the content of output
elements is still undefined. Expression (7) formally
describes the co-domain non-definition rule.

    , : |
NDEFC opR s op d C s d NDE   F (7)

where Cop denotes the set of elements comprising the co-
domain of operation op. According to expression (7), to
satisfy the co-domain non-definition rule, each content-
sensitive GUI element that belongs to the co-domain of the
given operation has to be in NDEF state before the operation
is performed.

Co-domain usage rule

The co-domain usage rule requires that the content of at
least one element belonging to the co-domain of a given
operation must be used before the operation is performed.
Co-domain usage rule prevents that effects of previously
executed operations are overwritten before their usage in
cases when co-domains of two operations overlap fully or
partially. Expression (8) describes the co-domain usage rule.

    , : |
USEDC opR s op d C s d USED   (8)

According to expression (8), to satisfy the co-domain

usage rule, at least one content-sensitive GUI element
belonging to the co-domain of an operation has to be in the
USED state.

 66

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

Composite rule

The composite rule defines how four basic FSM
transitions construction rules are applied to construct the
transitions of the application-level finite state machine. To
perform a given GUI operation, we require that the content
of all GUI elements belonging to the operation domain is
defined (domain definition rule) and that the content of at
least one GUI element is refreshed (domain refreshness
rule). Furthermore, we require that the content of all GUI
elements belonging to the operation co-domain is either still
undefined (co-domain non-definition rule) or, if the content
of some elements are already defined, then the content of at
least one such element has to be used (co-domain usage
rule). The composite rule is described using expression (9):

 (9)
     

  
, : , ,

,

DEF REF

NDEF USED

COMP D D

C C

R s op R s op R s op

R s op R s op



 ,



If the composite rule applies for a given FSM state and a

given GUI operation, then that operation may be applied as
a transition to transfer the GUI from the given state to the
next state. Thus, we may construct a transition from given
state to the next state, according to the basic FSM shown in
Fig. 3. The algorithm for constructing the set of transitions
for application-level FSM is given in Section 5.

E. FSM initial state construction

The initial state of the application-level FSM depends on
the initial state of application’s GUI. For example, if the
application GUI consists of four content-sensitive GUI
elements, each of which is empty at the beginning of
application execution, then the initial FSM state is [NDEF,
NDEF, NDEF, NDEF]. On the other side, if first two GUI

elements have predefined content, while the rest do not, then
the initial FSM state is [REF, REF, NDEF, NDEF].

V. ALGORITHM FOR APPLICATION-LEVEL FSM

CONSTRUCTION

The algorithm for constructing an application-level FSM
is presented in Fig. 5. The first input for the algorithm is a
data structure model containing the model of the application
GUI as defined with expressions (1) and (2), and
exemplified in Fig. 1 and Fig. 2. The data structure contains
a list of GUI elements and a list of GUI operations, where
the domain and co-domain of each operation are represented
as two hash tables. The second input for the algorithm is a
data structure initialGUIState containing the initial state of
the application as a list of GUI elements which are defined
at the start of the application. Both input data structures for
the algorithm are prepared by developers of the GUI
application. The algorithm returns the sets states and
transitions which contain the states and transitions of the
constructed FSM.

The algorithm computes the output through three phases.
First, the set of content-sensitive elements dimensions is
computed from the model as described in expression (3)
(lines 04 through 06). Second, the initial state of the FSM
initialFSMstate is computed as described in Section 4.5
(lines 08 through 13). Third, the states and transitions sets
are iteratively computed by checking the composite rule
defined in expression (9) for each operation, starting from
the initial state of the FSM (lines 15 through 28). If the
composite rule does apply for a given state and given
operation, the algorithm constructs a target state and makes
a transition from current state to target state. The transition
is labeled with the given GUI operation.

01 FSM_construct(model, initialGUIState):
02 define states, transitions, dimensions, reachableStates as empty sets
03
04 for each GUI element e in model:
05 if CE(e, model apply:) does
06 add e to dimensions
07
08 define state initialFSMState as new array[CE.length]
09 for each dimension d in dimensions:
10 if d  initialGUIState:
11 set initialFSMState[d] to “REF”
12 else:
13 set initialFSMState[d] to “NDEF”
14
15 add initialFSMState to reachableStates
16 while reachableStates is not empty:
17 define s1 as any state removed from reachableStates
18 for each GUI operation op in model:
10 if R (s , op) does apply: COMP 1

20 define state s2 as a copy of s1

21 for each dimension d in dimensions:

22 if d  Dop:
23 set s2[d] to “USED”
24 else if d  Cop:
25 set s2[d] to “REF”
26 add ransi s r op to s t tion from 1 fo
27 dd s

2 to transitions
a to

28 add s
2 reachableStates

1 to states
29
30 return (states, transitions)

Figure 5. Application-level FSM construction algorithm

 67

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

An excerpt of a complete FSM for application shown in
Fig. 1 is shown in Fig. 6. For the sake of readability, we
shown the first 17 states only and use N for NDEF, R for
REF, and U for USED when labeling FSM states.

VI. MODEL EFFICIENCY

In this section, we discuss the efficiency of the presented
model and algorithm. The algorithm described in Section 5
has an upper bound complexity given with expression (10):

  23 EN
E O E O EO N N N N N     (10) In ord

where NE is the number of GUI elements of the application,
while NO is the number of GUI operations.

The first augend (NE*NO) represents the complexity of
computing the set of content-sensitive elements; all GUI
elements must be checked by examining the domain and co-
domain of each operation. The second augend (NE)
represents the complexity of constructing the initial FSM
state. The third augend (3NE*NO*NE

2) represents the
complexity of constructing the states and transitions of the
FSM. As defined by expression (4), the maximum number
of states is 3|CE|, which in the worst case is 3NE. For each
state, the composite rule must be checked for each
operation, which has an upper bound complexity of

O(NO*NE). If the composite rule does apply, a new FSM
state is constructed by defining each dimension according to
the operations’ domain and co-domain, which has an upper-
bound complexity of O(NE). Expression (10) may be
approximated with an upper-bound complexity of O(3n*n3)
where n represents the sum of the numbers of GUI elements
NE and operations NO.

Figure 6. An excerpt of FSM describing the GUI of web application shown

in Fig. 1

Although the algorithm for construction of the
application-level FSM has super-exponential upper-bound
complexity, the average complexity and size of the
constructed FSM will be significantly smaller.

First, although the FSM constructed for an application
with N content-sensitive GUI elements may have a
maximum of 3N states, many of these states will be
unreachable. The algorithm presented in Fig. 5
acknowledges this by incrementally constructing only
reachable states, while unreachable states are not
constructed. For example, the FSM that describes the
application shown in Fig. 1, which has four content-
sensitive elements, is reduced from maximum of 81 states to
24 states reachable from initial [NDEF, NDEF, NDEF,
NDEF] state.

Second, although each state of the FSM has different
application-level semantics, many states are identical with
respect to FSM operation. In the proposed model, GUI
operations do not differentiate NDEF from USED state of a
particular element since both enable the same set of
operations to execute. In essence, the NDEF and USED
states, although different in semantics, are equivalent from
automata theory point of view [10]. Therefore, two states of
the application-level FSM which for each dimension have
either the same values or different values NDEF and USED,
are equivalent and may be reduced to a single FSM state.
This property may be acknowledged either by modifying the
algorithm to construct only non-equivalent states or by
merging equivalent states a-posteriori.

Lastly, since the model assumes that the domains and co-
domains of GUI operations are non-changeable during
application execution, which is true for most GUI
applications, the constructed FSM is deterministic.

In conclusion, these two properties, reduced number of
states and FSM determinism, enable both efficient
construction of application-level FSMs and their efficient
usage.

VII. MODEL USAGE

er to demonstrate the practical use of the model, we
describe two possible usage scenarios within the Geppeto
framework [4]. Geppeto is a consumer-oriented framework
for programming application-level workflows over widgets.
Programming in Geppeto is achieved using a programming-
by-demonstration technique, while programs consist of
sequences of GUI operations over widget GUI elements.
The presented model may be similarly applied to other web
applications enabling GUI automation [2], [3], [6].

First, if each widget was modeled with an application-
level FSM, the Geppeto framework could use the FSM to
guide users through the programming process in order to
reach a certain goal. The specification of a goal is done by
defining a goal state, based on which a path towards that
state consisting of GUI operations may be computed. For

 68

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

 69

example, if the translation widget presented in Fig. 1 is
being used to program another application, the framework
would visually guide the user to specify a command for
entering the input (write Input Text), then a command to
specify the source and target languages (select From, select
To), after which a command for clicking the translate button
(click Translate), and lastly a command to consume the
output translation (read Output Text).

Second, if each widget was modeled with an application-
level FSM, the Geppeto framework could verify the
correctness of consumer-defined programs before their
execution. For example, if the translation widget presented
in Fig. 1 is used in the program and if the consumer
specified multiple operations for entering the input (write
Input Text) before consuming the output (read Output Text),
the framework may alert the user that the output was not
consumed. Similarly, if the consumer specified commands
for entering input text (write Input Text) and specifying
source and target languages (select From, select To) but
didn’t specify commands for clicking the translate button
(click Translate) and consuming the results (read Output
Text), the framework may alert the user that the program
flow was not completed.

VIII. RELATED WORK

As we indicated in Section 1, development of the models
of GUI applications has been a research focus of GUI
testing [7], [8]. In GUI testing, the object of verification is a
GUI application under development, while the verification
is achieved using series of correct test. In contrast, our work
focuses on cases where GUI applications are known to be
correct and GUI-level programs require verification.

Most GUI testing techniques are based on model-based
testing [11] in which the GUI is modeled as a finite set of
states and a set of transitions between those states [12].
Based on the model, a large number of tests are
automatically generated [13] that check the model for
various properties, like reachability and ordering of
application-specific goal states.

There are two key challenges in developing effective GUI
testing techniques: state explosion of the model and model
extraction. First, the number of states in a finite-state model
may be unmanageably large even for simple applications
due to a large number of possible states for the content of
each GUI element. As a result, the number of tests required
to verify the application may become unacceptably large
due to the high execution time of running all tests. This state
explosion problem is usually approached by aggregating
states representing specific content into abstract states which
represent multiple different contents of a single element
[14], [15]. Nevertheless, the aggregation must be expressive
enough to model key system properties which are being
verified.

Creating an effective model has also been a goal of our
research, even though we do not generate tests but use the
application-level finite state machine for verification of GUI
automation programs. Therefore, we introduced a novel
aggregation scheme which combines all states of a single
GUI element into three abstract states representing non-
defined, refreshed, and used content. As we have shown,
this scheme is expressive enough to formalize correct usage

of GUI interfaces.
Another approach used in GUI testing techniques for

constructing tests in cases of large state sets is plan
generation. With plan generation [16], some states are
defined as goal states and tests are constructed as sequences
of operations leading from the initial to the goal state. As we
described in the previous section, a form of plan generation
may be applied to our model in order to guide end-users in
the construction of GUI automation programs.

The second challenge in GUI testing techniques is
extraction of a model from existing applications which do
not have one. For such cases, several reverse engineering
approaches have been proposed. In [17], a GUI ripping is
introduced as a process in which the software’s GUI is
automatically “traversed” by opening all its windows and
extracting all their widgets, properties, and values. In
contrast, the reverse engineering approach presented in [15]
is based on parsing the source code of Java applications.

The challenge of model extraction is important for our
work also. In order to construct an application-level FSM,
sets of GUI elements used as inputs and outputs must be
known for every operation. Since for most applications these
sets are not known, a system for automatically determining
these sets for an arbitrary GUI application is required and
both GUI ripping and source code parsing approaches may
be used.

IX. CONCLUSION

In this paper, we introduce a formal model for describing
data dependencies between controls and operations of GUI
applications. The proposed model is based on the formalism
of finite state machines, where states describe the possible
state of GUI controls, and transitions denote GUI
operations. The set of possible states is obtained by a novel
state aggregation scheme, which combines all states of a
single GUI element into three abstract states representing
non-defined, refreshed, and used content. We show how this
aggregation scheme is still expressive enough to describe
correct GUI usage. Furthermore, we give a set of simple
rules and an algorithm for automatic construction of finite
state machines for arbitrary GUI applications. Lastly, we
show how the model may be applied for reasoning about
GUI dynamics which is often used in applications for web
automation, testing, customization, and personalization.

The presented aggregation scheme and algorithm enable
both efficient construction and efficient usage of the state
machines. First, although the algorithm constructs the FSM
with super-exponential upper bound complexity, we show
that on average this complexity is significantly reduced due
to many unreachable and equivalent states. Consequently,
the size of the constructed FSM is reduced with respect to
the number of states and transitions. Second, the aggregation
scheme produces a deterministic finite state machine which
enables efficient usage.

Our results present several beneficial directions for future
work. First, a system for automatic extraction of GUI
operation domains and co-domains is required in order to
apply the model to existing applications. Although the
presented model is not tied to a specific programming
language or development framework, our interests are
focused on web applications. Second, in order to evaluate

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

the performance of program verification and end-user
satisfaction of program construction guidance, we plan to
integrate the model into the Geppeto framework. Third, our
model assumes that domains and co-domains of operations
are non-changeable during application execution, which in
some cases is not true. For example, if two text fields
represent a username-password login form, the co-domain
of login operation may vary depending on the correctness of
the supplied user credentials. Therefore, the model needs to
be extended in order to cover this non-determinism.

REFERENCES
[1] S. Staiger, “Static analysis of programs with graphical user interface”,

Proceedings of the 11th European Conference on Software
Maintenance and Reengineering (CSMR’07), Amsterdam,
Netherlands, 2007, pp. 252-264. [Online]. Available:
http://dx.doi.org/10.1109/CSMR.2007.44

[2] M. Bolin, M. Webber, P. Rha, T. Wilson, R. C. Miller, “Automation
and customization of rendered web pages”, Proceedings of the 18th
Annual ACM Symposium on User Interface Software and Technology,
Seattle, WA, USA, 2005, pp. 163-172. [Online]. Available:
http://dx.doi.org/10.1145/1095034.1095062

[3] J. Wong, J. Hong, “Making mashups with marmite: towards end-user
programming for the web”, Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI‘06), Montreal,
Quebec, Canada, 2006, pp. 1541-1546. [Online]. Available:
http://dx.doi.org/10.1145/1240624.1240842

[4] S. Srbljic, D. Skvorc, D. Skrobo, “Widget-oriented consumer
programming”, Automatika: Journal for Control, Measurement,
Electronics, Computing and Communications, Vol. 50, No. 3-4,
December 2009, pp. 252-264. [Online]. Available:
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73263

[5] A. Holmes, M. Kellogg, “Automating functional tests using
Selenium”, Proceedings of the Conference on AGILE 2006,
Minneapolis, Minnesota, USA, 2006, pp. 270-275. [Online].
Available: http://dx.doi.org/10.1109/AGILE.2006.19

[6] T. Yeh, T. H. Chang, R. C. Miller, “Sikuli: using GUI screenshots for
search and automation”, Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, Victoria, BC,
Canada, 2009, pp. 183-192. [Online]. Available:
http://dx.doi.org/10.1145/1622176.1622213

[7] A. M. Memon, “Advances in GUI testing”, Advances in Computers,
No. 58, Academic Press, August 2003, pp. 149-202. [Online].
Available: http://dx.doi.org/10.1016/S0065-2458(03)58004-4

[8] J. C. Silva, J. Saraiva, J. C. Campos, “A generic library for GUI
reasoning and testing”, Proceedings of the 2009 ACM Symposium on
Applied Computing, Honolulu, Hawaii, 2009, pp. 121-128. [Online].
Available: http://dx.doi.org/10.1145/1529282.1529307

[9] A. Gill, Introduction to the theory of finite state machines, McGraw-
Hill, New York, 1962.

[10] J. E. Hopcroft, “An nlogn algorithm for minimizing the states in a
finite automaton”, The Theory of Machines and Computations,
Academic Press, New York, 1971. [Online]. Available:
ftp://db.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf

[11] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, P. L. Jones, “Model-
based testing of GUI-driven applications”, Proceedings of the 7th
IFIP WG 10.2 International Workshop on Software Technologies for
Embedded and Ubiquitous Systems, Newport Beach, CA, USA, 2009,
pp. 203-214. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-10265-3_19

[12] F. Belli, “Finite state testing and analysis of graphical user
interfaces”, Proceedings of the 12th International Symposium on
Software Reliability Engineering, Hong Kong, China, November
2001, pp. 34-43. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2001.989456

[13] V. Santiago, N. L. Vijaykumar, D. Guimaraes, A. S. Amaral, E.
Ferreira, “An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models”,
IEEE International Conference on Software Testing Verification and
Validation Workshop, 2008, pp. 63 72. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2008.7

[14] M. B. Dwyer, V. Carr, L. Hines, “Model checking graphical user
interfaces using abstractions”, ACM SIGSOFT Software Engineering
Notes, Vol. 22, No. 6, New York, NY, USA, November 1997, pp.
244-261. [Online]. Available:
http://dx.doi.org/10.1145/267896.267914

[15] A. M. Memon, “An event-flow model of GUI-based applications for
testing”, Software Testing, Verification & Reliability, Vol. 17, No. 3,
John Wiley and Sons, September 2007, pp. 137-157. [Online].
Available: http://dx.doi.org/10.1002/stvr.v17:3

[16] A. M. Memon, M. E. Pollack, M. Lou Soffa, “Plan generation for
GUI testing”, Proceedings of The Fifth International Conference on
Artificial Intelligence Planning and Scheduling, April 2000, pp. 226-
235. [Online]. Available:
http://www.aaai.org/Papers/AIPS/2000/AIPS00-024.pdf

[17] A. M. Memon, I. Banerjee, A. Nagarajan, “GUI ripping: reverse
engineering of graphical user interfaces for testing”, 10th Working
Conference on Reverse Engineering, 2003, pp. 260-269. [Online].
Available: http://dx.doi.org/10.1109/WCRE.2003.1287256

 70

[Downloaded from www.aece.ro on Tuesday, February 28, 2012 at 14:09:08 (UTC) by 161.53.65.205. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

