
2 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

Pr
og

ra
m

m
at

ic
 W

eb
 I

nt
er

fa
ce

s

T he REST software architectural style1
is a major contributor to the Web’s
success. REST describes how large-

scale distributed hypermedia systems,
such as the Web, should operate to max-
imize beneficial properties, including
scalability, modifiability, performance,
simplicity, and reliability. To main-
tain usability in the face of continu-
ing growth and expansion into new
domains, the Web must retain the ben-
efits of this RESTful design. We can see
such growth in the introduction of
new media types and protocols, such
as SPDY and the Constrained Applica-
tion Protocol (CoAP); the proliferation
of machine agents driving the Web of
Things; and the growing diversity in
devices connected to the Web. However,
although REST principles have been
known for more than a decade, devel-
oping systems that conform to them is
difficult.

Software frameworks reduce devel-
opment complexity by providing tech-
nology implementations and principled

guidance for the development process.
Although most existing Web develop-
ment frameworks offer implementations
of Web technologies, such as protocols
and media types, they don’t provide
adequate guidance for incorporating
REST principles. Without such guidance,
engineers often break REST principles,
leading to systems with diminished
modifiability, scalability, and perfor-
mance. Consequently, both engineers
and researchers consider inadequate tool
support a significant drawback to RESTful
development.2,3

Here, we present guidelines for
designing frameworks for developing
RESTful systems. Two aspects of sys-
tem development drive these guide-
lines. First, frameworks should provide
a greater separation of concerns to
increase reusability and modifiabil-
ity, and to focus development efforts
on domain expertise. Second, complex
engineering disciplines should utilize
theoretical foundations for practical
guidance.4 Thus, frameworks should use

A key challenge in developing RESTful Web systems is the lack of software

development frameworks that support REST principles. This article gives

practical guidelines for designing frameworks for developing such systems.

Derived from intuitive formal models, these guidelines enable a development

process that improves separation of concerns and the modifiability of

developed systems. The authors analyze several existing Web frameworks to

determine how well they correspond to these guidelines.

Ivan Zuzak
University of Zagreb

Silvia Schreier
University of Hagen

ArRESTed Development
Guidelines for Designing REST Frameworks

FPO

IC-16-04-Zuza.indd 2 5/18/12 4:20 PM

Guidelines for Designing REST Frameworks

JULY/AUGUST 2012 3

simple formal models to provide abstractions
that encapsulate REST principles and steer the
development process.

REST Principles
RESTful systems are based on message-oriented
client-server interaction with the possibility
of layered intermediaries and message cach-
ing by any component. On the Web, a browser
application or machine-driven client interacts
with servers through layers of caching prox-
ies. Client-server interaction must be stateless,
meaning that the client maintains and sends
the session state with each request. On the Web,
this is enabled by HTTP’s statelessness. Fur-
thermore, server components can extend client
functionality by providing code-on-demand
(COD) programs, such as JavaScript scripts.

The uniform interface principle further
guides component behavior. Server functional-
ity is exposed as uniquely identifiable resources.
Client-server communication is based on the

client receiving a resource’s state informa-
tion in the form of representations and sending
those representations to the server to manipu-
late the resource’s state. Requests and responses
must be self-descriptive so that any component
can process them. On the Web, resources are
identified with URIs, whereas self-descriptiveness
is achieved via standard representation media
types and HTTP operations, headers, and sta-
tus codes. Finally, clients should make requests
only to resources identified with links in hyper-
media representations of previously received
responses. The “Related Research and Practice
in REST Framework Development” sidebar pres-
ents more information about developing RESTful
systems.

Framework-Driven
Development Process
Figure 1 illustrates our view of a framework-
driven development process for RESTful sys-
tems. The process explains developers’ roles and

Related Research and Practice in REST Framework Development

Existing research1,2 indicates that RESTful development
doesn’t benefit from integrated development environ-

ments (IDEs) or require client code generation, but rather
needs tools that give developers guidance on following REST
principles. Recent literature presents practical patterns for
developing and consuming RESTful Web services,3,4 such as
designing URIs and versioning Web services. Furthermore,
several authors express requirements for testing the RESTful-
ness of Web services,2,5–7 with a strong focus on supporting
hypermedia-driven service development and consumption.
Although not directly guiding framework implementation,
these results recognize the uniform interface principle as the
key issue of RESTful development and discuss the benefits and
challenges of implementing hypermedia-based systems.

Issues with understanding REST, building machine-to-
machine systems, and documenting applications have motivated
research on formal models,8,9 such as finite-state machines, for
describing RESTful systems10 and application-domain protocols.11
These results indicate that framework developers can use for-
mal models of RESTful systems as the foundation of RESTful
frameworks if they leverage those models to provide suitable
development abstractions that encapsulate REST principles.

Finally, some authors express requirements for RESTful
frameworks12 and implement frameworks for developing REST-
ful Web systems. Although some frameworks are maturing in
their support for RESTful development, a growing need exists
to define generic guidelines for directing framework and sys-
tem design. We analyze several Web frameworks in the main

text that provide noticeable support for implementing REST
principles.

References
1. C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs.

‘Big’ Web Services: Making the Right Architectural Decision,” Proc. 17th Int’l.

Conf. World Wide Web, ACM, 2008, pp. 805–814.

2. S. Vinoski, “RESTful Web Services Development Checklist,” IEEE Internet

Computing, vol. 12, no. 6, 2008, pp. 94–96.

3. L. Richardson and S. Ruby, RESTful Web Services, O’Reilly, 2007.

4. S. Allamaraju, RESTful Web Services Cookbook, O’Reilly, 2010.

5. R.T. Fielding, “REST APIs Must Be Hypertext-Driven,” blog, 20 Oct. 2008;

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.

6. L. Richardson, “Justice Will Take Us Millions of Intricate Moves,” QCon pre-

sentation, 20 Nov. 2008; www.crummy.com/writing/speaking/2008-QCon/.

7. J. Algermissen, “Classification HTTP-based APIs,” 2010, www.nordsc.com/

ext/classification_of_http_based_apis.html.

8. I. Zuzak, I. Budiselic, and G. Delac, “Formal Modeling of RESTful Systems

Using Finite-State Machines,” Web Engineering, LNCS 6757, Springer, 2011,

pp. 346–360.

9. S. Schreier, “Modeling RESTful Applications,” Proc. 2nd Int’l Workshop REST-

ful Design, ACM, 2011, pp. 15–21.

10. R. Alarcón, E. Wilde, and J. Bellido, “Hypermedia-Driven RESTful Service

Composition,” Service-Oriented Computing, LNCS 6568, Springer, 2011,

pp. 111–120.

11. J. Webber, S. Parastatidis, and I. Robinson, REST in Practice, O’Reilly, 2010.

12. S. Tilkov, “REST Litmus Test for Web Frameworks,” blog, 4 Aug. 2010;

www.innoq.com/blog/st/2010 /07/rest_litmus_test_for_web_frame.html.

IC-16-04-Zuza.indd 3 5/18/12 4:20 PM

Programmatic Web Interfaces

4 www.computer.org/internet/ IEEE INTERNET COMPUTING

is structured into framework, architecture, and
application phases. The presented separation
of concerns concentrates developer effort into
individual domains of expertise and increases
the framework elements’ reusability. Specifi-
cally, application developers should focus on
application goals and application-specific media
types, architecture developers on technologies
of a specific architecture, and framework devel-
opers on REST principles.

We illustrate this process with an example
system for backing up Twitter tweets using
GitHub gists, which are versionable snippets
of text. A machine-driven agent periodically
retrieves the user’s tweets (steps 1a and 1b in
Figure 1) using the Twitter API’s /statuses/
home_timeline/ resource to fetch an Atom-
formatted list of the last 20 tweets in the user’s
timeline. The agent then internally stores the
retrieved tweets and periodically publishes
them as a GitHub gist (steps 2a and 2b) using the
GitHub API, which exposes a /gists collection
resource for creating new gists.

The framework phase involves developing
the core framework as architecture-independent
modules required for implementing specific
architectures and applications. These modules

include both generic RESTful system engines
that implement the processing flow in clients
and servers, client application state and book-
mark data structures, and the repositories for
storing protocol and media type implemen-
tations. Furthermore, framework developers
define the necessary component interfaces for
the architecture and application layers.

The architecture phase involves implement-
ing the technologies of specific RESTful archi-
tectures. Using the framework phase’s interface
definitions, architecture developers implement
required application-independent protocols,
media types, link types, and COD engines. In
our example, this includes implementing the
HTTP protocol, URI parsers, and the Atom
media type that Twitter uses.

The application phase involves creating cli-
ent and server application components using
modules from the framework and architecture
layers. Specifically, server developers imple-
ment resources bound to resource identifiers,
such as those for accessing user favorites and
statuses in the Twitter API. Similarly, client
developers implement application-specific logic
as either machine-driven agents or browsers.
In both cases, we can view application-specific

Figure 1. Framework-driven development process for RESTful systems. This process explains
developers’ roles and is structured into framework, architecture, and application phases. An example
application based on the GitHub and Twitter APIs illustrates the application-level logic on both the
client and server components.

Execution
phase

Application
phase

Architecture
phase

Framework
phaseD

ev
el

o
pm

en
t

o
f R

E
S

T
fu

l s
ys

te
m

 t
im

el
in

e

In
cr

ea
si

ng
 n

um
be

r
o

f p
ar

ti
ci

pa
ti

ng
 d

ev
el

o
pe

rs
Client

developers
Server

developers
(Twitter)

Server
developers
(GitHub)

Architecture developers

Framework developers

Protocols (HTTP), generic media types (ATOM, HTML),
generic link types and link relations, and code-on-demand engines

Generic RESTful system engines
Data structures for application state, bookmarks, protocol, and media type repositories

Interfaces for media type, protocol, link type, and resource type implementations

Application logic
Application-speci c

media types and
link relations

Application resource logic
(/statuses/home_timeline,

/lists/all, /search)

Resource-speci c
templates

Application-speci c
media types and

link relations

Application resource logic
(/gists, /user,

/issues)

Resource-speci c
templates

Application-speci c
media types and

link relations

2a POST api.github.com/gists \n\n {link from tweets}

2b 201 Created Location: https://api.github.com/gists/XYZ

1a GET api.twitter.com/1/statuses/home_timeline

1b 200 OK application/atom+xml \n\n {last 20 tweets}

IC-16-04-Zuza.indd 4 5/18/12 4:20 PM

Guidelines for Designing REST Frameworks

JULY/AUGUST 2012 5

logic as rules that process the obtained repre-
sentations and select a hypermedia link for a
user agent to follow. In the example, the user
agent extracts, collects, and temporarily stores
the tweets, and periodically follows a book-
marked link to the GitHub Gists resource. Fur-
thermore, application developers implement
application-specific media type processors that
weren’t defined during the architecture phase,
such as the custom JavaScript Object Notation
(JSON) format the GitHub API uses.

Guidelines and Framework Analysis
Here, we present guidelines for designing
frameworks that incorporate REST principles
and support the described development process.
In parallel with describing guidelines, we ana-
lyze selected Web frameworks to determine their
level of support for each guideline. We’ve cho-
sen both server-side and client-side frameworks
for different programming languages and para-
digms that support building arbitrary RESTful
systems: Webmachine (https://bitbucket.org/
justin/webmachine), Jersey (http://jersey.java.
net), Restfulie (http://restfulie.caelum.com.br),
and RESTAgent (http://restagent.codeplex.com).
First, we look at framework guidelines, which
address system-wide guidance not specific to
client- or server-based components.

Although we might consider some guide-
lines optional, frameworks that don’t implement
them will have either reduced functionality or
reduced modifiability. Thus, application devel-
opers must re-implement modules from the
architecture layer or even the framework layer.
Table 1 summarizes the guidelines and frame-
work analysis.

Framework Design Guidelines
First, frameworks should support system modi-
fiability,1 so developers can easily export,
import, and change any architecture and appli-
cation element definition — for example, they
can define new protocol headers, introduce
new resources, and change media type defi-
nitions. Well-defined module interfaces and
a repository-oriented design for protocol and
media type implementations help achieve such
modifiability.

Frameworks should support the implementa-
tion of multiple application-level protocols, such
as HTTP, and their simultaneous use. To support
separation of concerns, a framework should

promote the modularization of protocol imple-
mentation definitions, which should consist of
the supported request operations (for example,
HTTP GET and POST), response codes (such as
HTTP 200 and 404), and possible header names
and values (for example, a BNF grammar defin-
ing the Accept header). Furthermore, a protocol
implementation should contain protocol deseri-
alizers and serializers, which expose message
elements from a byte stream, and vice versa.
These message elements are control data, such
as protocol operations and status codes; meta-
data, such as headers; and representation data.
All analyzed frameworks are bound to HTTP or
HTTP extensions, and the protocol implementa-
tion definitions are only partially modularized.

In addition, the framework should sup-
port the implementation of resource identifier
namespaces, such as the URI namespace, as well
as identifier templates. Thus, frameworks should
implement template engines that parse and gen-
erate identifiers using templates and template
variables. All the frameworks we analyze are
bound to the URI namespace.

A framework should also support the imple-
mentation of different media types and their
simultaneous use. For example, server com-
ponents should be able to expose resources
using both HTML and Atom media types, and
user agents should be able to parse both types
of representations. Media type implementa-
tion definitions should be modularized and
consist of representation parsers for data and
hypermedia links, serializers, and supported
link types and relations. For instance, devel-
opers should be able to define both HTML and
Atom media types as parsers that validate mes-
sages, build a DOM structure and extract the
links, and define the link types and relations,
such as <a> and HTML link types, and
the <link> link type and self link relation for
Atom. All analyzed frameworks provide some
support for extending the set of media types,
but only RESTAgent supports the definition of
link types.

Finally, frameworks should support content
negotiation for choosing the media type for
response representations, based on client pref-
erences and server capabilities. For example,
client developers should be able to express a
preference for a custom JSON representation
over an Atom representation, whereas servers
supporting RSS and Atom media types should

IC-16-04-Zuza.indd 5 5/18/12 4:20 PM

Programmatic Web Interfaces

6 www.computer.org/internet/ IEEE INTERNET COMPUTING

automatically return an Atom representation.
From the analyzed frameworks, only REST-
Agent fails to support content negotiation.

Client-Oriented Guidelines
The client-oriented guidelines are based on a
finite-state machine (FSM) formalization of
RESTful client components.5 In our opinion, an

FSM-based approach is appropriate for model-
ing RESTful systems and offers well-known
development abstractions.

Figure 2 presents the execution flow for cli-
ent components and the development phase
for each module. To satisfy statelessness, the
client maintains the FSM’s current state and
also generates server requests using the input

Table 1. Analysis of existing frameworks for RESTful development.

Framework features Webmachine Jersey Restfulie RESTAgent Comments

Languages Erlang Java Ruby C# Restfulie is also available in Java
and C#

Supported component types Server Server,
client

Server,
client

Client

Framework guidelines

Protocol implementation
definition + + + +

Implementation definitions not
modularized

Extensibility of supported
protocols − − − −

Frameworks are bound to HTTP
(and HTTP extensions)

Extensibility of supported
namespaces − − − −

Frameworks are bound to URI
namespace

Media type definition
+ + + +

Most frameworks have only parser
and serializer, no link types

Extensibility of supported
media types + + + +

Content negotiation + + + −

Client guidelines

Generic client engine n/a
− + +

Restfulie and RESTAgent: not
completely automated

Flexible application state
structure

n/a
− − +

RESTAgent: hashtable

Support for defining PLL,
HLL, and ALL rules

n/a
− − −

Bookmarks n/a − − +

Link type definition support n/a

− − +
RESTAgent: hard-coded set of
state integrators – transfer, embed,
replace, independent

Support for COD engines n/a − − −

Server guidelines

Generic server engine + + + n/a

Resource types + + + n/a No predefined ones

Mapping functions − − − n/a

State machines for behavior − − + n/a

Minting identifiers based
on resource type − + +

n/a

Dispatching + + + n/a Only supported for URI namespace

+: supported as described in the article; −: not supported; +: partial support, with comments

IC-16-04-Zuza.indd 6 5/18/12 4:20 PM

Guidelines for Designing REST Frameworks

JULY/AUGUST 2012 7

symbol generator. The transition function is
divided between the client and server, where
the server responds to requests while the client
integrates responses into the next state.

The FSM’s state is the set of resource repre-
sentations present in the application state. The
protocol and media type processors read these
representations (step 1 in Figure 2). The protocol
processor parses received messages into proto-
col message elements. The media type proces-
sor parses the representation data to extract the
hyperlinks, where each link is defined with a
resource identifier, link type, and link relation.
The protocol and the media type processors
pass the links to the protocol-level logic (PLL),
hypermedia-level logic (HLL), and application-
level logic (ALL) modules (step 2) to generate the
next request. The PLL and HLL modules auto-
matically bring the system into a steady state
in which no outstanding requests exist, as with
a completely loaded webpage. For example, PLL
generates requests for handling resource redi-
rection responses, such as 301 status codes in
HTTP, whereas HLL generates requests for fetching

embedded resource representations, such as
HTML links. When the system state
is steady, ALL generates requests based on
application-specific goals or user input. In a
steady state, ALL might also bookmark links
available in the application state (step 3) and
reuse those links later as if they were still pres-
ent. The request preprocessor validates and seri-
alizes the generated request (step 4) using the
chosen link’s link type. For example, the request
processor validates that only HTTP GET requests
are generated for HTML <a> links. Next, the
request preprocessor sends the request to the
server component (step 5). The response inte-
grator uses the server’s response representation
(step 6) to construct the next application state
(step 7). For example, for requests generated
for navigational HTML <a> links, the response
representation will replace the current applica-
tion state. However, for requests generated for
embedding links, the response represen-
tation will be embedded in the current appli-
cation state. Finally, if the received response is
a COD script, a COD engine executes it (step 8)

Figure 2. Generic RESTful client model and execution flow. Green elements represent modules
implemented by client-side application developers; light blue elements those implemented by
architecture developers; and brown elements those implemented by framework developers.

3

2

2

1

4

5

6

8

7

9

10

Legend
Control �ow
Data �ow

Application
state

R

E E

Current state

Protocol
repository

Bookmarks

Media type
processor

Protocol
processor

Client

Input symbol generator

Application-level
logic

Hypermedia-level
logic

Protocol-level
logic

Request
preprocessor

Transition
function

Response
integrator

Code-on-demand
engine

Storage

Server

Media type
repository

IC-16-04-Zuza.indd 7 5/18/12 4:20 PM

Programmatic Web Interfaces

8 www.computer.org/internet/ IEEE INTERNET COMPUTING

based on the script’s media type. The execut-
ing script can autonomously read (step 9) and
change the application state (step 10).

Frameworks should provide an implemen-
tation of the described execution f low as a
generic execution engine, whereas developers
implement specific modules only. This inver-
sion of control increases module decoupling and
improves the modifiability of the framework
and developed systems. Although Restfulie and
RESTAgent provide a generic engine, they don’t
automate the complete processing flow.

The application state module should be flex-
ible enough to accommodate various client
types, such as browsers and machine agents.
A directed graph would be an appropriate data
structure, so nodes stand for representations
and edges represent embedding links, with one
representation marked as the root node. In a
Web application, for example, an HTML docu-
ment is the root node, and representations of
embedded images and iframes are child nodes.
Of the analyzed frameworks, only RESTAgent
provides a hashtable-based application state
data structure.

A framework should support the definition
of PLL, HLL, and ALL as rules over the appli-
cation state. Each rule checks for patterns in
the application state; if a pattern is satisfied,
the rule uses one of the links to determine the
next request. Furthermore, the framework
should execute rules according to the priority
in RESTful systems: PLL first, HLL second, and
ALL last. For example, for HTTP 301 redirect
responses, first the PLL fetches the represen-
tation of the redirected resource, and then the
HLL fetches embedded resources. The system is
in a steady state when the PLL and HLL don’t
generate any new requests. Furthermore, the
framework should enable the configuration of
which PLL, HLL, and ALL rules are active, so
that, for example, mobile agents can disable
automatic fetching of embedded images. None
of the analyzed frameworks use this approach
for defining protocol, hypermedia, and applica-
tion logic.

Frameworks should also allow the ALL
to store any part of the application state and
provide bookmarks storage for saving applica-
tion entry-point links. In the Twitter-GitHub
example, the agent uses internal storage to store
received tweets before sending them to GitHub,
while the link to the GitHub Gists resource

is available as a bookmark. Of the analyzed
frameworks, only RESTAgent provides book-
marking capability.

Frameworks should support the implemen-
tation of link types as tuples of a link type
identifier — such as <a> in HTML — a request
validation function, and a response integra-
tion function. The request preprocessor uses the
request validation function to check whether
PLL, HLL, and ALL may generate a given
request from the current application state and
for a specific link. The response integration
function is called by the response integrator and
produces the next application state by merging
the response representation into the representa-
tion graph (step 7) based on the link type used to
generate the request. These two functions
together are the foundation of implementing
REST’s hypermedia principle. Only the REST-
Agent framework supports different kinds of
link types, but this set isn’t extensible.

Finally, frameworks should support the defi-
nition of COD engines as functions that execute
scripts with read-write access to the application
state (step 9). None of the analyzed frameworks
support COD engines.

Server-Oriented Guidelines
Because defining resources is one of the main
tasks during server development, we base
server-oriented guidelines on previous work on
metamodels for RESTful server applications.6

Although resources are formally defined as
“a conceptual, temporally varying mapping”1
from resource identifiers to entities — such as
user or tweet information — in most cases,
an application consists of resources that have
the same mapping and the same behavior.
So, frameworks should support the defini-
tion of resource types, including their struc-
tural and behavioral parts. A named resource
type describes the commonalities of a set of
resources by defining their mapping function,
their exposed data and hyperlinks, and how
they react to particular protocol operations. A
typed entity is a simple data object that has
attributes and relationships with other entities.
Supported by the framework, developers can
use the type of entity to which a resource maps
to define the data and hyperlinks the resource’s
representations offer. A resource won’t usually
offer all of an entity’s internal details — for
example, Twitter user resources won’t expose

IC-16-04-Zuza.indd 8 5/18/12 4:20 PM

Guidelines for Designing REST Frameworks

JULY/AUGUST 2012 9

internal user-statistics information. Only server
developers should use resource types; clients
should be guided only by media types and link
relations of received representations.7

Because we can distinguish resource types
based on their content and relation to other
resource types, frameworks should offer differ-
ent structural resource types to minimize the
effort of implementing concrete types in the
application phase. An example of content-based
distinction are list resources, such as the latest
10 tweets, or subresources. Whereas applica-
tion developers can define resource types in all
analyzed frameworks, none offer predefined
ones.

Frameworks should also support differ-
ent kinds of mapping functions. First, some
resources map to the same entity as long as
they exist — for instance, resources that map
to specific tweets. Frameworks can support this
constant mapping because mapping a resource
to an entity and loading the entity from the
persistence layer is possible without effort from
application developers. Second, some resources
have a varying mapping for every request,
such as a random tweet resource. In such cases,
application developers should be able to define
the entity types these resource types map
to and how concrete entities are calculated —
by, for example, sorting tweets and randomly
choosing one from the top 10. So, frameworks
can automatically make the calculated entities
available in the execution context upon receiv-
ing a request. None of the analyzed frameworks
support defining mapping functions.

To support defining behavior, we suggest
that each resource type defines a state machine
that encodes the application-specific states that
a resource of this type can be in. Each state
defines the supported protocol operations and
the behavior to be executed for valid requests.
For example, defining resource behavior in
the Restfulie framework is based on such state
machines.

The framework should be able to create
identifiers for resources based on their type’s
identifier template and a given entity. This
enables the framework to support the render-
ing of hyperlinks in representations based on
the relationship between two entities. Similarly,
dispatching requires determining a given identi-
fier’s resource type. All the analyzed frameworks
support template-based dispatching, while only

Webmachine doesn’t support minting identifiers
from templates.

Figure 3 illustrates the execution flow that
frameworks should implement as a generic
engine for server-side processing. The request
parser processes received requests (step 1 in
Figure 3), parsing each request into mes-
sage elements. Errors, such as invalid requests
or application-level errors, will result in a
response to the client (step 13) and in skip-
ping other steps. The request parser forwards
request message elements to the dispatcher
(step 2), which locates the cor responding
resource type definition (step 3) based on the
request’s resource identifier and sends it to the
request processor (step 4). The request proces-
sor retrieves the definition’s mapping function
and state machine (step 5a) and, based on this
mapping function, the mapped entities (step 5b).
The resource type state machine asserts that the
current state supports the requested protocol
operation (step 6), while the media type proces-
sor deserializes the request body (step 7). The
state machine defines the concrete behavior and
invokes the required parts of the business logic
(step 8), which in turn create and update the rel-
evant entities (step 9) or connect to other sys-
tems for fulfilling the task. After processing the
request, all information necessary for building
the response is available (step 10). Finally, the
response builder (step 11) builds the response
representation using the media type processor
(step 12) and sends it to the client (step 13). All
analyzed frameworks implement server execu-
tion flows as a generic engine.

T he development process and design guide-
lines we’ve presented provide practical

advice for implementing or improving REST
frameworks. Based on existing research on
formal models, the described decomposition of
client and server processing flows into generic
modules enables better separation of concerns
and greater system modifiability.

Although the Web frameworks we analyzed
do support some of the presented guidelines,
most guidelines aren’t widely supported. In par-
ticular, frameworks should have better support
for extending the supported protocols, defining
hypermedia link types for managing applica-
tion state, and using state machines to define
resource behavior. Future work in this area

IC-16-04-Zuza.indd 9 5/18/12 4:20 PM

Programmatic Web Interfaces

10 www.computer.org/internet/ IEEE INTERNET COMPUTING

includes defining guidelines for implement-
ing intermediaries, enabling explicit caching
support, and supporting machine-to-machine
communication.

Acknowledgments
We acknowledge the support of the Ministry of Science,

Education and Sports of the Republic of Croatia through

the Computing Environments for Ubiquitous Distributed

Systems (036-0362980-1921) research project. We’re grate-

ful for helpful feedback from Vedrana Jankovic from

IN2; Ivan Budiselic, Dejan Skvorc, Miroslav Popovic,

K lemo V ladimir, Mar in Si l ic , Goran Delac, Zvonimir

Pavlic, and Sinisa Srbljic from the Faculty of Electr i-

cal Engineering and Computing, University of Zagreb;

and Christian Kollee and Bernd Krämer from the Faculty

of Mathematics and Computer Science, University of

Hagen.

Figure 3. Generic RESTful server model and execution flow. Dark blue elements represent modules
implemented by server-side application developers; light blue blue elements those implemented by
architecture developers; and brown elements those implemented by framework developers.

Request
parser

Request
processor

Dispatcher

Business
logic

Response
builder

Media type
processor

Entity
storage

Protocol
repository

1

2

4
7

8

9

6
3

11

5a

5b

12

10

13

Resource type name

Constant mapping function

Attributes

Resource type name

Varying mapping function

Attributes

Hyperlink

OP1

OP1OP2

OP1

OP3

OP2

OP1

Resource type de�nitions Resource type
state machines

Legend
Control �ow
Data �owTransition functionServer state

Protocol handling

Server

Client

Media type
processing

Media type
repository

IC-16-04-Zuza.indd 10 5/18/12 4:20 PM

Guidelines for Designing REST Frameworks

JULY/AUGUST 2012 11

References
1. R.T. Fielding, Architectural Styles and the Design of

Network-based Software Architectures, doctoral disser-

tation, Univ. of California, Irvine, 2000.

2. C. Pautasso, O. Zimmermann, and F. Leymann, “REST-

ful Web Services vs. ‘Big’ Web Services: Making the

Right Architectural Decision,” Proc. 17th Int’l. Conf.

World Wide Web, ACM, 2008, pp. 805–814.

3. S. Vinoski, “RPC and REST: Dilemma, Disruption, and

Displacement,” IEEE Internet Computing, vol. 12, no. 5,

2008, pp. 92–95.

4. M. Broy, “Can Practitioners Neglect Theory and Theo-

reticians Neglect Practice?” Computer, vol. 44, no. 10,

2011, pp. 19–24.

5. I. Zuzak, I. Budiselic, and G. Delac, “Formal Modeling

of RESTful Systems Using Finite-State Machines,” Web

Engineering, LNCS 6757, Springer, 2011, pp. 346–360.

6. S. Schreier, “Modeling RESTful Applications,” Proc. 2nd

Int’l Workshop RESTful Design, ACM, 2011, pp. 15–21.

7. R.T. Fielding, “REST APIs Must Be Hypertext-Driven,”

blog, 20 Oct. 2008; http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven.

Ivan Zuzak is a computer science PhD candidate and

research assistant at the University of Zagreb,

Faculty of Electr ical Engineer ing and Comput-

ing (FER). His research interests include software

architecture, REST, Web arch itec ture , and inter-

widget communicat ion. Zuzak has an MEng in

computer science from FER. Contact him at izuzak@

gmail.com.

Silvia Schreier i s a computer science PhD student

and research assistant at the University of Hagen,

Faculty of Mathemat ics and Computer Science.

Her interests focus on model-driven development

of resource-oriented applications. Schreier has a

Diplom in computer sc ience f rom t he Un ive r-

sity of Erlangen-Nuremberg. Contact her at silvia.

schreier@gmail.com.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IC-16-04-Zuza.indd 11 5/18/12 4:20 PM

